DOI QR코드

DOI QR Code

Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite

SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동

  • Published : 2009.06.30

Abstract

Reversed plane bending fatigue tests were conducted on SiC particle reinforced and SiC whisker reinforced aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and the causes of fracture and fracture mechanism were investigated by SEM. The relationship between da/dn and $K_{max}$ show that da/dn increases in high stress level while decrease and again increases with increasing of $K_{max}$ in low stress level for two materials.

본 연구는 SiC 입자 강화된 알루미늄기 복합재료와 SiC 휘스커 강화된 알루미늄기 복합재료를 이용해서 평면굽힘피로시험을 행했다. 표면미소피로균열의 발생 및 진전거동은 레프리카법으로 연속관찰을 했고 파괴원인과 파괴기구를 규명하기 위해서 주사전자현미경을 이용했다. 두 재료 모두 da/dn - $K_{max}$ 관계에서 고응력 레벨에서는 $K_{max}$의 증가에 따라 da/dn이 증가 했지만, 저응력 레벨에서는 da/dn이 감소하다가 증가하는 것을 알 수 있다.

Keywords

References

  1. 福永秀즙 外5, 1991, "令屬基複合材料のf見狀£將來(1)," 日本金屬學會會報, 第30卷, 第4號,pp. 276-288
  2. K.Murayama, 1992, "Activation of Uses Development in Advanced Composite Materials," Material System, Vol.11 , pp. 5-12
  3. M.S.Han and J.I.Song, 2003, "Characterization of fracture toughnεss of the short fiber reinforces metal matrixcomposites," lnternational Journal of Modern Physics B,17, 8&9, pp. 1827-1832 https://doi.org/10.1142/S0217979203019733
  4. Y.J.Jo and Y.C. Park, 2009, "Comparison of FatigueStrength Criteria for TiNi/AI6061-T6 and TiNi/AI2024-T4 Shape Memory Alloy Composite," Trans of the KSME A, Vol. 33, No. 2 pp. 99-107 https://doi.org/10.3795/KSME-A.2009.33.2.99
  5. Mohmmned Noor Desmukh, R.K.Pandey, A.K.Mukhopadhyay,2005 , "Fatigue behavior of 7010 aluminum alloy containing scandium", Scripta Materialia, 52, pp. 645-650 https://doi.org/10.1016/j.scriptamat.2004.11.018
  6. S.K.Woo and I.S.Han, 2007, "Technology Trend and Prospect of Silicon Carbide Based Ceramics for Energy and Environment Application", Ceramist, Vol. 10, No. 4, pp. 23-30
  7. S.Kumai, J.E.King and J.F.Knoot, 1990, "Fatigue crack growth in SiC particulate reinforced aluminium alloys," Fatigue90, Vol. 11, pp. 869-874
  8. J.K.Shang and R.O.Ritchie, 1989, "On thε particle-size dependence of fatigue crack propagation thresholds in SiC-particulate-reinforced aluminum-alloy composites:Role of crack closure and crack trapping", Acta metall. , Vol.37, No. 8, pp. 2267-2278 https://doi.org/10.1016/0001-6160(89)90154-5
  9. 小林俊郞 外4名, 1991, SiC粒子强化6061了ルミウムの疲勞龜裂傳播特性, 日本金屬學會誌, 第55權, 第1號, pp. 72-78
  10. A.F Whitehousε and T.W.Clyne, 1993, "Cavity Formation During Tensile Stringing of Particulate and short Fiber Metal Matrix Composites," Acta Metall. Mater. Vol. 41 ,No. 6, pp. 1701-1711 https://doi.org/10.1016/0956-7151(93)90189-Y
  11. 小磯어信重ほか 2名, 1989, "SiC 粒子强化 A1 合金의 疲勞特性", 村科, Vol. 38, No. 433, pp. 1206-1211
  12. S.B. Biner, 1990, "Growth of Fatigue Cracks Emanating from Notches in SiC particulate Aluminum Composite", Fatigue Fract. Engng. Mater. Struct. , Vol. 13, No. 6, pp637-646 https://doi.org/10.1111/j.1460-2695.1990.tb00633.x
  13. E.R.de los Rios, Tang,Z., and Millεr, K .J., 1984, "Shortcrack fatigue behaviour in a medium carbon steel",Fatigue Engng. mater. struct. , Vol. 7, pp. 97-108 https://doi.org/10.1111/j.1460-2695.1984.tb00408.x
  14. M.H.El Haddad., K.N.Smith., T.H.Topper., 1979, "Fatigue crack propagation of short cracks," ASME Journal of Engng. Mater. and Technology, Vol. 101 , pp. 42-46. https://doi.org/10.1115/1.3443647
  15. S.Pearson, 1975, "Initiation of Fatigue Cracks in Commercial Alloys and thε subsequent propagation of very short cracks," Eng. Fracl. Mech. , Vol. 7,pp. 235-247 https://doi.org/10.1016/0013-7944(75)90004-1
  16. J.Lankford, 1982, "The Growth of Long Fatigue CrackGrowth in a SiC Rcinforced Aluminum Alloy," Fatigue Fract. Engng. Mater. Struct., Vol. 5, No. 3, pp. 233-248 https://doi.org/10.1111/j.1460-2695.1982.tb01251.x
  17. J.K.Shang, R.O.Ritchie, 1989, "Crack Bridging by uncrackεdLigaments during Fatigue-Crack Growth in SiC-Rεinforced Aluminum-Alloy Composites," Metall. Trans. A, Vol. 20A,pp. 897-908 https://doi.org/10.1007/BF02651656
  18. 增田千利, ほか1名, 1989, ウイスカ-强化皮び SiC 粒子分散 複合村科の疲勞破壈 機構," 鐵と鋼, Vol. 75. No. 9, pp. 1753-1760
  19. J.C.Nεwman, I. S.Raju, 1983, "Stress intensity factor equationsfor cracks in three-dimensional finite bodics," ASTM STP 791,pp. 238-265
  20. 皮籠石紀雄, ほか2名, 1898, "AI合金鍴物のき裂傳ぱ特性に皮ばす熱處理の影響," 日本機械學會論文輯, 55券, 516號, pp. 1733-1739
  21. J.J.Ahn, J.D.Kwon and S.T.Kim, 1996, "Fatigue Life Prediction of SiCw/AI Composites by Using the Monte-Carlo Simukation",Trans of the KSME A, Vol. 20, No. 5, pp. 1552-1561