• Title/Summary/Keyword: SiC paper

Search Result 936, Processing Time 0.032 seconds

THE EFFECT OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF REPAIRED COMPOSITES (광중합형 복합레진 수리시 표면처리가 전단결합강도에 미치는 영향)

  • Moon, Jang-Won;Lee, Kwang-Won;Park, Soo-Joung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.156-165
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength between new and old composites. Circular cavities prepared on the center of acrylic resin mold and the prepared cavities were filled with composite resin. They randomly assigned into control group and 8 groups according to the difference in surface treatments of old composites; Control group: no surface treatment, Group 1: surface treated with #120 SiC paper & bonding agent, Group 2: surface treated with #400 SiC paper & bonding agent, Group 3: surface treated with #120 SiC paper, 32% $H_3PO_4$ & bonding agent, Group 4: surface treated with #400 SiC paper, 32% $H_3PO_4$ & bonding agent, Group 5: surface treated with #120 SiC paper, primer & bonding agent, Group 6: surface treated with #400 SiC paper, primer & bonding agent, Group 7: surface treated with #120 SiC paper, 32% $H_3PO_4$, primer & bonding agent, Group 8: surface treated with #400 SiC paper, 32% $H_3PO_4$, primer & bonding agent. New composites were applicated on the old composites of experimental groups. The shear bond strengths for the experimental specimen were measured and the results were analyzed by using one way ANOVA. The observations of surface morphology after SiC paper roughening and debonded surface morphology after shear bond strength test were done by SEM. The results were as follows; 1. Shear bond strengths for specimens roughened with #120 SiC paper matching with the particle size of coarse diamond bur were significantly higher than those for the specimens with #400 SiC paper(P<0.05). By SEM, the surface of the specimens roughened with #120 SiC paper was more irregular than the specimens with #400 SiC paper. 2. Shear bond strengths for specimens treated with 32% $H_3PO_4$ etchant, primer, bonding resin were significantly higher than those for specimens treated with 32% $H_3PO_4$ and bonding resin(P<0.05). 3. Shear bond strengths for the specimens treated with 32% $H_3PO_4$ etchant and bonding resin were significantly higher than those for specimens treated with only bonding resin(P<0.05). There was no remarkable change of surface morphology after 32% $H_3PO_4$ etching. 4. It was possible to observe mixed fracture patterns (the cohesive fracture of old composite and the adhesive fracture between old and new composite) in the specimens roughened with #120 SiC paper, but almost adhesive fracture in the specimens roughened with #400 SiC paper.

  • PDF

EFFECT OF CUTTING INSTRUMENTS ON THE DENTIN BOND STRENGTH OF A SELF-ETCH ADHESIVE (상아질 삭제기구가 자가부식 접착제의 결합강도에 미치는 효과)

  • Lee, Young-Gon;Moon, So-Ra;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.13-19
    • /
    • 2010
  • The purpose of this study was to compare the microshear bond strength of a self-etching primer adhesive to dentin prepared with different diamond points, carbide burs and SiC papers, and also to determine which SiC paper yield similar strength to that of dentinal surface prepared with points or burs. Fifty-six human molar were sectioned to expose the occlusal dentinal surfaces of crowns and slabs of 1.2 mm thick were made. Dentinal surfaces were removed with three diamond points, two carbide burs, and three SiC papers. They were divided into one of eight equal groups (n = 7); Group 1: standard diamond point(TF-12), Group 2: fine diamond point (TF-12F), Group 3: extrafine diamond point (TF-12EF), Group 4: plain-cut carbide bur (no. 245), Group 5: cross-cut carbide bur (no. 557), Group 6 : P 120-grade SiC paper, Group 7: P 220-grade SiC paper, Group 8: P 800-grade SiC paper. Clearfil SE Bond was applied on dentinal surface and Clearfil AP-X was placed on dentinal surface using Tygon tubes. After the bonded specimens were subjected to uSBS testing, the mean uSBS (n = 20 for each group) was statistically compared using one-way ANOV A and Tukey HSD test. In conclusion, the use of extrafine diamond point is recommended for improved bonding of Clearfil SE Bond to dentin. Also the use of P 220-grade SiC paper in vitro will be yield the results closer to dentinal surface prepared with fine diamond point or carbide burs in vivo.

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

Characteristics of porous 3C-SiC thins formed by anodization (양극 산화법으로 형성된 다공질 3C-SiC 막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS (Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 ~ 90 nm was achieved at 7.1 $mA/cm^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 $cm^{-1}$. PL shows the band gap enegry of thin film (2.5 eV) and porous 3C-SiC (2.7 eV).

  • PDF

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

Mechanical characteristics of polycrystalline 3C-SiC thin films using Ar carrier gas by APCVD (순 아르콘 캐리어 가스와 APCVD로 성장된 다결정 3C-SiC 박막의 기계적 특성)

  • Han, Ki-Bong;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.319-323
    • /
    • 2007
  • This paper describes the mechanical characteristics of poly 3C-SiC thin films grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC thin film was deposited by APCVD method using only Ar carrier gas and single precursor HMDS at $1100^{\circ}C$. The elastic modulus and hardness of poly 3C-SiC thin films were measured using nanoindentation. Also, the roughness of surface was investigated by AFM. The resulting values of elastic modulus E, hardness H and the roughness of the poly 3C-SiC film are 305 GPa, 26 GPa and 49.35 nm respectively. The mechanical properties of the grown poly 3C-SiC film are better than bulk Si wafers. Therefore, the poly 3C-SiC thin film is suitable for abrasion, high frequency and MEMS applications.

Fabrication of SiC Fiber-SiC Matrix Composites by Reaction Sintering

  • Lim, Kwang-Young;Kim, Young-Wook;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.204-207
    • /
    • 2008
  • This paper presents a new process for producing SiC fiber-SiC matrix(SiC/SiC) composites by reaction sintering. The processing strategy for the fabrication of the SiC/SiC composites involves the following: (1) infiltration of the SiC fiber fabric using a slurry consisting of Si and C precursors, (2) stacking the slurry-infiltrated SiC fiber fabric at room temperature, (3) cross-linking the stacked composites, (4) pyrolysis of the stacked composites, and (5) hot-pressing of the pyrolyzed composites. It was possible to obtain dense SiC/SiC composites with relative densities of >96% and a typical flexural strength of ${\sim}400$ MPa.

A Study on Direct Bonding of 3C-SiC Wafers Using PECVD Oxide (CVD 절연막을 이용한 3C-SiC기판의 직접접합에 관한 연구)

  • 정연식;류지구;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.164-167
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS applications because of its application possibility in harsh environments. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The 3C-SiC epitaxial films grown on Si(100) were characterized by AFM and XPS, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$\textrm{cm}^2$∼Max : 15.5 kgf/$\textrm{cm}^2$).

  • PDF

Cutting Characteristics of SiC-based Ceramic Cutting Tools Part 1: Microstructure and Mechanical Properties of SiC-based Ceramic Cutting Tools (SiC계 세라믹 절삭공구의 절삭특성 평가 Part 1: SiC계 절삭공구의 미세구조와 기계적 특성)

  • Park, June-Seuk;Kim, Kyeug-Jae;Shim, Wan-Hee;Kwon, Won-Tae;Kim, Young-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.82-88
    • /
    • 2001
  • In order to fulfil the requirements of the various performance profiles of ceramic cutting tools, six different SiC-based ceramics have been fabricated by hot-pressing (SiC--${Si}_3 {N}_4$composites) or by hot-pressing and subsequent annealing (monolithic SiC and SiC-TiC composites). Correlation between the annealing time and the corresponding microstructure and the mechanical properties of resulting ceramics have been investigated. The grain size of both ${Si}_3 {N}_4$and SiC in SiC-${Si}_3 {N}_4$composites increased with the annealing time. Monolithic SiC has the highest hardness, SiC-TiC composite the highest toughness, and the SiC-${Si}_3 {N}_4$composite the highest strength among the ceramics investigated. The hardness of SiC-${Si}_3 {N}_4$composites was relatively independent of the grain size, but dependent on the sintered density. The cutting performance of the newly developed SiC-based ceramic cutting tools will be described in Part 2 of this paper.

  • PDF

Growth of Polycrystalline 3C-SiC Thin Films using HMDS Single Precursor (HMDS 단일 전구체를 이용한 다결정 3C-SiC 박막 성장)

  • Chug, Gwiy-Sang;Kim, Kang-San;Han, Ki-Bong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.156-161
    • /
    • 2007
  • This paper describes the characteristics of polycrystalline ${\beta}$ or 3C (cubic)-SiC (silicon carbide) thin films heteroepitaxailly grown on Si wafers with thermal oxide. In this work, the poly 3C-SiC film was deposited by APCVD (atmospheric pressure chemical vapor deposition) method using HMDS (hexamethyildisilane: $Si_{2}(CH_{3}_{6})$ single precursor. The deposition was performed under various conditions to determine the optimized growth conditions. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_{2}$ were measured by SEM (scanning electron microscope). Finally, depth profiling was invesigated by GDS (glow discharge spectrometer) for component ratios analysis of Si and C according to the grown 3C-SiC film thickness. From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror and low defect. Therfore, the poly 3C-SiC thin film is suitable for extreme environment, Bio and RF MEMS applications in conjunction with Si micromaching.