• Title/Summary/Keyword: SiC diode

Search Result 174, Processing Time 0.03 seconds

A Study on the Characteristic of n-ZnO:In/p-Si (111) Heterostructure by Pulsed Laser Deposition (PLD 법으로 증착된 n-ZnO:In/p-Si (111) 이종접합구조의 특성연구)

  • Jang, Bo-Ra;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Jun-Je;Kim, Hong-Seung;Lee, Dong-Wook;Lee, Won-Jae;Cho, Hyeong-Kyun;Lee, Ho-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.419-424
    • /
    • 2009
  • ZnO films doped with different contents of indium ($0.1{\sim}10$ at.%) were deposited on Si (111) substrate by Pulsed Laser Deposition (PLD). The structural, electrical and optical properties of the films were investigated using XRD, AFM, Hall and PL measurement. Results showed that un-doped ZnO film had (002) plane as the c-axis orientated growth, whereas indium doped ZnO films exhibited the peak of (002) and the weak (101) plane. In addition, in the indium doped ZnO films, the electron concentration is ten times higher than that of un-doped ZnO film, while the resistivity is ten times lower than that of un-doped ZnO film. The indium doped ZnO films have UV emission about 380 nm and show a red shift with increasing contents of indium. The I-V curve of the fabricated diode show the typical diode characteristics and have the turn on voltage of about 2 V.

The effect of deep level defects in SiC on the electrical characteristics of Schottky barrier diode structures (깊은 준위 결함에 의한 SiC SBD 전기적 특성에 대한 영향 분석)

  • Lee, Geon-Hee;Byun, Dong-Wook;Shin, Myeong-Cheol;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2022
  • SiC is a power semiconductor with a wide bandgap, high insulation failure strength, and thermal conductivity, but many deep-level defects. Defects that appear in SiC can be divided into two categories, defects that appear in physical properties and interface traps that appear at interfaces. In this paper, Z1/2 trap concentration 0 ~ 9×1014 cm-3 reported at room temperature (300 K) is applied to SiC substrates and epi layer to investigate turn-on characteristics. As the trap concentration increased, the current density, Shockley-read-Hall (SRH), and Auger recombination decreased, and Ron increased by about 550% from 0.004 to 0.022 mohm.

High Voltage Ti/4H-SiC Schottky Rectifiers (고전압 Ti/4H-SiC 쇼트키 장벽 다이오드 제작 및 특성분석)

  • Kim, C.K.;Yang, S.J.;Lee, J.H.;Noh, I.H.;Cho, N.I.;Kim, N.K.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.834-838
    • /
    • 2002
  • In this paper, we have fabricated 4H-SiC schottky diodes utilizing a metal-oxide overlap structure for electric filed termination. The barrier height and Ideality factor were measured by current-voltage, capacitance-voltage characteristics. Schottky barrier height(SBH) were 1.41ev for Ni and 1.35eV for Pt, 1.52eV for Pt/Ti at room temperature and Pt/Ti Schottky diode exhibited Ideality factor was 1.06 to 1.4 in the range of $25^{\circ}C{\sim}200^{\circ}C$. To improve the reverse bias characteristics, an edge termination technique is employed for Pt/Ti/4H-SiC Schottky rectifiers and the device show excellent characteristics with higher blocking voltage up to 780V compared with unterminated devices.

  • PDF

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

Physical Modeling of SiC Power Diodes with Empirical Approximation

  • Hernandez, Leobardo;Claudio, Abraham;Rodriguez, Marco A.;Ponce, Mario;Tapia, Alejandro
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.381-388
    • /
    • 2011
  • This article presents the development of a model for SiC power diodes based on the physics of the semiconductor. The model is able to simulate the behavior of the dynamics of the charges in the N- region based on the stored charge inside the SiC power diode, depending on the working regime of the device (turn-on, on-state, and turn-off). The optimal individual calculation of the ambipolar diffusion length for every phase of commutation allows for solving the ambipolar diffusion equation (ADE) using a very simple approach. By means of this methodology development a set of differential equations that models the main physical phenomena associated with the semiconductor power device are obtained. The model is developed in Pspice with acceptable simulation times and without convergence problems during its implementation.

저온 선형 PECVD를 이용한 OLED용 Encapsulation 특성 연구

  • Yun, Seung-Jin;Kim, Seong-Jin;Choe, Jeong-Su;Jo, Byeong-Seong;Jeong, Seok-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.180-180
    • /
    • 2016
  • 최근 디스플레이 시장의 주요 키워드는 flexible organic light emitting diode (OLED) 이다. OLED 소자의 수명을 결정하는 가장 큰 요인 중의 하나는 공기 중의 O2와 H2O에 의한 유기물의 열화이다. 따라서 공기 중의 O2나 H2O가 유기물에 쉽게 침투하는 것을 막는 것은 소자의 수명 향상을 위하여 필수적이라 할 수 있다[1-3]. SiNx 박막은 경질로 투과성이 우수하며, 화학적 불활성인 특성으로 이러한 Barrier 역할로 연구되어 산업분야에 다양하게 응용되고 있다[4]. SiNx 박막은 일반적으로 plasma enhanced chemical vapor deposition (PECVD) 기술을 이용하여 증착되는데 기존의 PECVD 기술을 이용한 SiNx 박막은 낮은 water vapor transmission rate (WVTR) 등의 문제점들로 인해 한계점이 들어났다. 본 연구에서는, flexible display의 thin film encapsulation (TFE) 공정에서의 적용을 알아보기 위해 $370{\times}470$ size를 증착할 수 있는 In-line 장비를 이용하였으며, 기존의 PECVD 기술의 문제점으로 지적되고 있는 낮은 WVTR을 해결하기 위하여 저온 (<$100^{\circ}C$) 선형 PECVD 기술을 이용하여 WVTR을 개선하고자 하였다. 공정가스로는 SiH4와 NH3를 사용하였으며, SiH4 Carrier 가스로 He을 추가적으로 사용하였다. 또한 공정 압력은 100mTorr를 유지하였다. 증착된 SiNx 박막의 물리적, 화학적 특성 분석을 위해 분광엘립소메타, field emission electron microscopy (FESEM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) 등을 이용하여 측정하였으며, 박막에 투습되는 수분의 양은 MOCON사의 AQUATRAN 2(W)로 측정하였다. OLED 소자를 구현하기 위해서는 기본적으로 봉지층에 투습되는 양을 $10-6g/m2{\cdot}day$ 이하로 막아줘야 한다고 알려져 있으나, 기존의 PECVD 기술을 이용하여 제작된 SiNx 박막의 WVTR은 $10-2{\sim}10-3g/m2{\cdot}day$ 레벨의 WVTR 결과를 보이고 있다. 본 연구에서 사용된 저온 선형 PECVD 기술을 이용하여 제작된 SiNx 박막의 WVTR은 $5.0{\times}10-5g/m2{\cdot}day$ 이하의 개선된 결과를 확인 할 수 있었다. 또한 flexible display에 적용하기 위해 SiNx 박막의 두께를 최소화한 100nm의 두께에서도 WVTR은 $5.0{\times}10-5g/m2{\cdot}day$ 이하의 결과가 유지됨을 알 수 있었다.

  • PDF

Application of Si3N4 Thin Film as a Humidity Protection Layer for Organic Light Emitting Diode (Si3N4 박막의 유기발광소자 수분침투 방지막으로의 응용)

  • Kim, Chang-Jo;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.397-402
    • /
    • 2010
  • In this paper, we studied WVTR(water vapor transmission rate) properties of $Si_3N_4$ thin film that was deposited using TCP-CVD (transformer coupled plasma chemical vapor deposition) method for the possibility of OLED(organic light emitting diode) encapsulation. Considering the conventional OLED processing temperature limit of below $80^{\circ}C$, the $Si_3N_4$ thin films were deposited at room temperature. The $Si_3N_4$ thin films were prepared with the process conditions: $SiH_4$ and $N_2$, as reactive gases; working pressure below 15 mTorr; RF power for TCP below 500 W. Through MOCON test for WVTR, we analyzed water vapor permeation per day. We obtained that WVTR property below 6~0.05 gm/$m^2$/day at process conditions. The best preparation condition for $Si_3N_4$ thin film to get the best WVTR property of 0.05 gm/$m^2$/day were $SiH_4:N_2$ gas flow rate of 10:200 sccm, working pressure of 10 mTorr, working distance of 70 mm, TCP power of 500 W and film thickness of 200 nm. respectively. The proposed results indicates that the $Si_3N_4$ thin film could replace metal or glass as encapsulation for flexible OLED.

p-type Zn Diffusion using by Solid State Method of $GaAs_{0.60}P_{0.40}$ and the Properties of Electroluminescence (고상 확산 법에 의한 P-type Zn 확산과 $GaAs_{0.60}P_{0.40}$의 전계발광 특성)

  • Pyo, Jin-Goo;Lim, Keun-Young;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.481-485
    • /
    • 2003
  • To diffuse Zn at solid-state, the $SiO_2/ZnO/SiO_2$ wafers was made by PECVD and RF Spotter. Thicknesses of bottom $SiO_2$ and cap $SiO_2$ was about $500{\AA}$ and about $3500{\AA}$. First test was Diffusion temperatures were $760^{\circ}C$, $780^{\circ}C$, and $800^{\circ}C$, and diffusion times were 1, 2, 3, 4, 5, and 6 hr and 2nd test was Diffusion temperatures were $760^{\circ}C$, $720^{\circ}C$, and $680^{\circ}C$, and diffusion times were 1, 2, 3, 4, 5, and 6 hr. LED chips were fabricated by the diffused wafers at Fab. The peak wavelength of all chips showed about $625{\sim}650\;nm$ and red color Main reason for Iv change was by diffusion temperature not diffusion time. The lower temperature was the higher Iv. We thick that these properties is because of the very high diffusion temperature.

  • PDF

A Novel Switching Loss Minimized PWM Method for a High Switching Frequency Three-Level Inverter with a SiC Clamp Diode (높은 스위칭 주파수를 가지는 SiC 클램프 다이오드 3-레벨 인버터를 위한 스위칭 손실을 최소화하는 새로운 PWM 방법)

  • Ku, Nam-Joon;Jung, Hong-Ju;Kim, Rae-Young;Hyun, Dong-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.354-355
    • /
    • 2011
  • 그 동안 스위칭 손실 저감을 위해 Si 다이오드를 SiC 다이오드로 대체한 인버터들이 많이 소개되었다. NPC 인버터에서도 마찬가지로 클램프 다이오드 소자를 SiC 다이오드로 대체함으로써 스위칭 손실을 저감시킬 수 있다. 하지만 IGBT의 스위칭 손실이 매우 크기 때문에 단지 클램프 다이오드 소자를 바꿈으로써 줄일 수 있는 스위칭 손실은 한계가 있다. 따라서 본 논문은 낮은 변조지수를 갖는 NPC 인버터에서 역회복 손실을 포함한 스위칭 손실을 최소화 시킬 수 있는 새로운 PWM 방법을 제시한다. 제안한 방법에 의해 역회복 현상은 거의 발생하지 않으며 스위칭 손실은 상당히 저감된다. 그러므로 전체 시스템 효율을 증가시킬 수 있고 인버터를 더 높은 스위칭 주파수에서 동작시킬 수 있다. 제안한 방법의 타당성은 각 소자의 성능평가와 수치해석적 방법을 적용해 검증하였다.

  • PDF

Thermal characteristics of $W_{67}N_{33}$/GaAs structure (PECVD방법으로 형성한 $W_{67}N_{33}$/GaAs구조의 열적 특성)

  • Lee, Se-Jeong;Hong, Jong-Seong;Lee, Chang-U;Lee, Jong-Mu;Kim, Yong-Tae;Min, Seok-Gi
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.443-450
    • /
    • 1993
  • Self-alignment gatc Schottky contact structure on Si- implanted GaAs was formed by plasma enhanced chemical vapor dcposirion. Tungsten nitride thin films (ahclut 1600$\AA$) \vcre dopositcd on GaAs at $350^{\circ}C$ in order to fahricarc GaAs 1Cs and ttwn rapidly annealed at $750^{\circ}C$ to $900^{\circ}C$. Thermal charac tcristics of PECVD)-$W_{67}N_{43}$/GaAs structure were investigated by X-ray diffraction, photolumintesccnce. and optical deep level transient specrroscopy. Results revealed that $W_{67}N_{33}$ gate was more thermally sta ble with GaAs substrate than W gate and Si atoms implanted In $W_{67}N_{33}$/GaAs structure became morr active than those In W/GaAs after annealing. I-V characteristics of $W_{67}N_{33}$/GaAs diod c exhibired a nearly ideal diode behavior. The termal stability of $W_{67}N_{33}$/GaAs diode was better than that of W/GaAs diode with the post annealing at temperatures from 800 to $900^{\circ}C$ for 20s without As overpressure.

  • PDF