• Title/Summary/Keyword: SiC content

검색결과 802건 처리시간 0.026초

The Effect of Plasma Power on the Composition and Microhardness of a-SiC:H Films Grown by PECVD

  • Lee, Young-Ku-K;Kim, Yunsoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.123-123
    • /
    • 1999
  • Amorphous hydrogenated silicon carbide (a-SiC:H) films were deposited at the temperature of 40$0^{\circ}C$ using plasma enhanced chemical vapor deposition. The a-SiC:H films were characterized by x-ray photoelectron spectroscopy (XPS) and nanoindentation method. By increasing the plasma power from 20W to 160W, the oxygen content of the a-SiC:H films were observed to decrease from 12.1% to 4.4%. On the other hand, the plasma power did not affect the ratio of carbon to silicon in our experiment where the 1, 3-disilabutane was used as the precursor. Microhardness of the films was observed to increase as the plasma power increased, while the elastic modulus was observed to gave a maximum value at the plasma power of 80W. Microhardness of the film is thought to be strongly affected by the content of adventitious oxygen in the film and it is concluded that the hardness of the film can be improved by increasing the plasma power.

  • PDF

Connector용 Cu-Ni-Si-P합금의 특성에 미치는 Ni및 Si의 영향에 관한연구 (A Study on the Influence of Ni and Si Content on the Characteristics of Cu-Ni-Si-P Alloy for Connector Materials)

  • 노한신;이병우;이광학;김홍식
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.877-887
    • /
    • 1994
  • 강도, 소전율, 스프링성, 내열성 및 굽힘 가공성등의 적절한 조화를 갖는 콘넥팅재료를 개발하기 위하여 Cu-Ni-Si-P합금에 대하여 연구하였다. Ni와 Si의 조성을 달리한 3종류의 합금을 용해, 주조하여 약 $900^{\circ}C$에 열간압연 후 수냉하고, 그 후 냉간압연하여 $450^{\circ}C$. $500^{\circ}C$$550^{\circ}C$에서 시효처리한 후 기계적 성질 변화와 도전율 등을 조사하였다. 고강도와 고존도율의 적절한 조화를 나타내는 Cu-2.7%Ni-0.53% Si-0.029%P 합금을 만들었다. 합금 1을 0.5mm두께의 콘넥팅재료로 가공한 후 여러가지 특성은 인청동(C 5210R-H)과 황동(C2600R-EH)에 비해 우수한 것으로 평가되었다.

  • PDF

마이크로웨이브 조사에 따른 산화알루미늄이 함유된 실리콘카바이드의 SF6 제거 (Removal of SF6 over Silicon Carbide with Aluminium Oxide by Microwave Irradiation)

  • 최 성 우
    • 대한환경공학회지
    • /
    • 제35권4호
    • /
    • pp.240-246
    • /
    • 2013
  • $SF_6$는 지구온난화지수가 가장 높은 중요한 온실가스이다. 본 연구에서는 마이크로파 조사에 따른 산화알루미늄이 혼합된 실리콘카바이드의 SF6 제거실험을 실시하였다. DRE (Decomposition and Removal Efficiencies)실험은 3,000 ppm의 $SF_6$를 사용하여 GC-TCD를 통하여 분석하였다. 산화알루미늄의 함량이 10~30 wt%까지 $SF_6$의 제거효율은 증가하였으나 산화알루미늄의 함량이 40~50 wt%에서 제거효율이 감소하였다. 특히 $900^{\circ}C$ 이상 에서 SiC-$Al_2O_3$ (20 wt%)와 SiC-$Al_2O_3$ (30 wt%)는 99.99%의 $SF_6$ 제거효율을 보여주었으며 SiC-$Al_2O_3$ (30 wt%)가 $700^{\circ}C$에서 96.72%의 제거효율을 보여주었다. 마이크로파 조사량과 산화알루미늄의 함량을 고려시 SiC-$Al_2O_3$ (30 wt%)가 $SF_6$ 제거에 가장 적절하였다. 본 연구의 결과로 마이크로파에 의한 $SF_6$ 제거시 SiC에 $Al_2O_3$의 함량 조절이 중요할 것으로 사료되어진다.

$\beta-Sialon/SiC$ Whisker 복합재료의 기계적 물성 및 마찰 마모 특성 연구 (Mechanical and Tribological Properties of $\beta-Sialon/SiC$ Whisker Composite)

  • 김호균;소유영;김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1259-1264
    • /
    • 1994
  • $\beta$-Sialon has been regarded as one of promising materials showing high strength, fracture toughness, corrosion resistence and wear resistence. The improvement of the fracture toughness and tribological properties of $\beta$-Sialon (Z=1) has been attempeted by fabricating the $\beta$-Sialon/ SiC whisker composite. Each of green body composed of following ingredients, i.e., Si3N4, AlN, Y2O3 nd SiC, respectively, was first fired at 178$0^{\circ}C$ for 3hrs in N2 atmosphere and then post-HIPed at 173$0^{\circ}C$ for 1 hr under 170 MPa for N2 gas pressure. The fracture toughness, flexural strength and tribological properties increased with increasing SiC whisker content, despite the reduction of the relative density and hardness. $\beta$-Sialon/15 vol% SiC whisker showed a significant enhancement of wear resistance compared to the monolithic $\beta$-Sialon. The addition of SiC whisker caused the reduction of the density and hardness, but induced the increment of wear resistance.

  • PDF

SHS화학로에 의한 SiC의 합성 (Synthesis of SiC by Self-Propagating High Temperature Synthesis Chemical Furnace)

  • 김도경;박성;조건;이형복
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1283-1292
    • /
    • 1994
  • Ultra-fine $\beta$-SiC powders were fabricated by self-propagating high temperature synthesis process (SHS) using chemical furnace. The dependences of the C powders with different surface areas, the molar ratios of C/Si, the weight ratios of chemical fuel content, and pellet diameter-size on synthesis were investigated. Compositional and structural characterization of these powders was carried out by scanning electron micrograph and X-ray diffraction. The $\beta$-SiC powders which had C/Si mole ratio=1.05, 3 times chemical fuel contents, and pellet diameter=20 mm were optimum for synthesis efficiency. By optimizing process-variables, it is possible to fabricate $\beta$-SiC powders which have little secondary phases ($\alpha$-SiC).

  • PDF

Al-Si 합금의 용탕 단조시 유동도에 미치는 압력, 과열 및 규소 함량의 영향 (Effects of Pressure, Superheat and Si Content on the Fluidity of Al-Si Alloy during Squeeze Casting)

  • 이학주;정기환;권해욱
    • 한국주조공학회지
    • /
    • 제26권3호
    • /
    • pp.133-139
    • /
    • 2006
  • The effects of applied pressure, superheat and silicon content on the fluidity of Al-Si alloy during squeeze casting were investigated. The Fluidity of Al-7.0wt%Si alloy during squeeze casting was increased with applied pressure up to 60 MPa, meanwhile it rather decreased beyond that. Therefore, the optimum squeeze casting pressure was 60 MPa. The fluidity was increased with superheat up to $150^{\circ}C$. On the other hand, it rather decreased at the superheat of $200^{\circ}C$. The fluidity of Al-Si alloy during squeeze casting was decreased with silicon content in the range of $0.0{\sim}3.0\;wt%$, increased in the range of $3.0{\sim}13.0\;wt%$. The fluidity of Al-15.0 wt%Si alloy was lower than that of Al-13.0 wt%Si alloy.

기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향 (Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics)

  • 최영훈;김영욱;우상국;한인섭
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

오스템퍼드 구상흑연주철의 기계적 성질에 미치는 Si의 영향 (Influence of Si Contents on the Mechanical Properties of Austempered Ductile Iron)

  • 이상인;오영근;전기찬
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.286-291
    • /
    • 1997
  • Influence of Si contents on the mechanical properties and microstructure of austempered ductile iron was investigated. Four different Si contents between 2.0 and 2.9% were used. Austenitizing was performed at $890^{\circ}C$ for 2 hrs and austempering temperatures were both 340 and $380^{\circ}C$ for 0.5, 1, and 2 hrs. Nodule content was more than $300/mm^2$ and nodularity was more than 90%. Microstructure was revealed using nital and retained austenite was measured by x-ray diffractometer. Tensile test, no-notch Charpy impact test and wear test were performed. Tensile strength was improved as Si content increased and both elongation and impact toughness had peak at 2.6%Si. The specimen austempered at $380^{\circ}C$ showed lower tensile strength than that of $340^{\circ}C$, but showed higher elongation. However, austempering temperature of $380^{\circ}C$ was desirable because that of $340^{\circ}C$ was close to lower bainite transformation. As austempering time increased, tensile strength and elongation were improved and optimum condition was obtained for 2 hrs heat treatment.

  • PDF

하이브리드 코팅시스템에 의해 제조된 Cr-Mo-Si-C-N 박막의 미세구조 및 기계적 특성연구 (Microstructure and Mechanical Properties of Cr-Mo-Si-C-N Coatings Deposited by a Hybrid Coating System)

  • 윤지환;안성규;김광호
    • 한국표면공학회지
    • /
    • 제40권6호
    • /
    • pp.279-282
    • /
    • 2007
  • Cr-Mo-Si-C-N coatings were deposited on steel and Si wafer by a hybrid system of AIP and sputtering techniques using Cr, Mo and Si target in $Ar/N_2/CH_4$ gaseous mixture. Instrumental analyses of XRD and XPS revealed that the Cr-Mo-Si-C-N coatings must be a composite consisting of fine(Cr, Mo and Si)(C and N) crystallites and amorphous $Si_3N_4$ and SiC. The hardness value of Cr-Mo-Si-C-N coatings significantly increased from 41 GPa of Cr-Mo-C-N coatings to about 53 GPa with Si content of 9.3 at.% due to the refinement of (Cr, Mo and Si)(C and N) crystallites and the composite microstructure characteristics. A systematic investigation of the microstructures and mechanical properties of Cr-Mo-Si-C-N coatings prepared with various Si contents is reported in this paper.

초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성 (Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites)

  • 박희섭;류민호;홍순형
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.