• Title/Summary/Keyword: SiC Whisker Reinforced Aluminum Matrix Composite

Search Result 6, Processing Time 0.021 seconds

Initiation and Growth Behavior of Small Surface Fatigue Cracks on SiC Whisker Reinforced Aluminum Composite (SiC 휘스커 강화 알미늄기 복합재료의 미소 표면 피로균열의 발생 및 진전거동)

  • Choe, Yeong-Geun;Lee, Taek-Sun;Kim, Sang-Tae;Seo, Chang-Min;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1584-1592
    • /
    • 2000
  • Reversed plane bending fatigue tests were conducted on SiC whisker reinforced aluminum composite which were consolidated by squeeze casting process. Initiation and growth of small surface fatigue c racks were investigated by means of a plastic replica technique. The fatigue crack initiated in the vicinity of SiC whisker/matrix interface. It was found that a fatigue crack deflected along SiC whisker and grew in a zig-zag manner microscopically, although the crack propagated along the direction normal to the loading axis macroscopically. The coalescence of micro-cracks was observed in the tests conducted at high stress levels, but were not evident in tests in which lower levels of stress were applied. Due to the coalescence, a higher crack growth rate of small cracks rather than those of long cracks was recognized in da/dn -ΔK realtionship.

Effect of Alumina Coating on Mechanical Properties of SiC Whisker Reinforced Silicon Nitrate Ceramic Composite

  • Lee, Ki-Ju;Xu, Jing-Wen;Hwang, Woon-Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.24-28
    • /
    • 2007
  • Alumina coated SiC whiskers were prepared by homogeneous precipitation of aluminum sulfate. The Si3N4 composites reinforced with coated SiC whiskers were fabricated by hot-pressing at $1800^{\circ}C$ for 2 h under an $N_{2}$ atmosphere of 0.1 MPa to examine the effects of coated whiskers on the mechanical properties of SiC whisker reinforced $Si_{3}N_{4}$ composite. By the addition of alumina coated SiC whiskers instead of as received ones, the fracture toughness of composite was about 6.7 $MPam^{1/2}$ which was slightly lower than as received SiC whisker reinforced composite. This result seems to be caused by the fact that the crack deflection and whisker pull-out were decreased. Thus, alumina coated SiC whiskers were considered to form relatively strong interface bond with $Si_{3}N_{4}$ matrix.

High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting (용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성)

  • Lim, Suk-Won;Nishida, Yoshinori
    • Journal of Korea Foundry Society
    • /
    • v.21 no.6
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF

A Study on the Fatigue Strength Evaluation of Metal Matrix Composite (금속기 복합재료의 피로강도 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.41-53
    • /
    • 1994
  • In this paper, rotating-bending fatigue tests of the SiC-whisker- reinforced 6061-T6 aluminum alloy and 6061-T6 alumiunm alloy made by power metallurgy were carried out to investigate the fatigue characteristics of plain and notched specimens at room temperature. The fatigue mechnisms in both materials were clarified through successive surface observations using the plastic replica method. In the case of the SiC-whisker-reinforced composites, there are whisker rich and poor zones and the fatigue crack is nucleated from the end of whiskers near the boundary. On the other hand, in the case of the 6061-T6 aluminum alloy, the fatigue crack is nucleated from defects and propagates by shear. Moreover, the results were discussed based on linear notch mechanics.

  • PDF

Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite (SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • Reversed plane bending fatigue tests were conducted on SiC particle reinforced and SiC whisker reinforced aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and the causes of fracture and fracture mechanism were investigated by SEM. The relationship between da/dn and $K_{max}$ show that da/dn increases in high stress level while decrease and again increases with increasing of $K_{max}$ in low stress level for two materials.

Effect of Hot Extrusion on the Mechanical Properties of 6061 Aluminum Alloy composites Reinforced with SiC whisker (SiC휘스커로 강화한 6061 Al합금 복합재료의 기계적 특성에 미치는 열간압출의 영향)

  • Kim, Jun-Su;Lim, Su-Geun
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.132-140
    • /
    • 1996
  • Both cast and extruded composites of SiC whisker reinforced 6061 Al alloy matrix were fabricated by high pressure infiltration of the alloy melt into the SiC preform and subsequent hot extrusion of the composite ingots. The micro structures, age hardening behavior and mechanical properties have been examined on the both cast and extruded composites of SiCw/6061. The cast composites of SiCw/6061 were obtained in which SiC whiskers were randomly oriented. Hot extrusion of these cast composites lead to alignment of the whisker in the direction of extrusion. Strengthening effect of whisker in the extruded composites is lower than that of the cast composites. The cast composites of SiCw/6061 showed higher thensile strength and lower elongation than extruded composites of SiCw/6061 at all testing temperatures. Lower tensile strength and higher elongation of the extruded composites were attributable to fine grain structures in which grain boundary sliding occruued preferentially at elevated temperatures.

  • PDF