• Title/Summary/Keyword: SiC C3M

Search Result 1,709, Processing Time 0.027 seconds

Microstructures Of Continuously Porous SiC-Si3N4 Composites Fabricated Using Waste SiC Sludge (폐 SiC 슬러지를 이용하여 제조한 연속다공질 SiC-Si3N4 복합체의 미세조직)

  • Gain Asit Kumar;Lee Hee-Jung;Jang Hee-Dong;Lee Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.177-182
    • /
    • 2005
  • Large amounts of the waste SiC sludge containing small amounts of Si and organic lubricant were produced during the wire cutting process of the single silicon crystal ingots. The waste SiC sludge was purified by the washing process and the purified SiC powders were used to fabricate continuously porous $SiC-Si_3N_4$ composites using a fibrous monolithic process, in which carbon, $6wt\%\;Y_2O_3-2\;wt\%\;A1_2O_3$ and ethylene vinyl acetate were added as a pore-forming agent, sintering additives, and binder, respectively. In the burning-out process, carbon was fully removed and continuously porous $SiC-Si_3N_4$ composites were successfully fabricated. The green bodies containing SiC, Si particles and sintering additives were nitrided at $1410^{\circ}C$ in a flowing $N_2+10\%\;H_2$ gas mixture. Continuously porous composites were combined with SiC, ${\alpha}Si_3N_4,\;\beta-Si_3N_4$ and a few $\%$ of Fe phases. The pore size of the 2nd and the 3rd passed $SiC-Si_3N_4$ composites was $260\;{\mu}m$ and $35\;{\mu}m$ in diameter, respectively.

Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites (Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향)

  • Kim, Jong-Chan;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF

Effect of SiC Particle Size on Microstructure of $Si_3N_4/SiC$ Nanocomposites ($Si_3N_4/SiC$ 초미립복합체의 미세조직에 미치는 SiC 입자크기의 영향)

  • 이창주;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.152-157
    • /
    • 2000
  • Si3N4/SiC nanocomposite ceramics containing 5 wt%dispersed SiC particles were prepared by gas-pressure-sintering at 200$0^{\circ}C$ under nitrogen atmosphere. SiC particles with average sizes of 0.2 and 0.5${\mu}{\textrm}{m}$ were used, and the effect of the SiC particle size on the microstructure was investigated. The addition of SiC particles effectively suppressed the growth of the Si3N4 matrix grains. The effect of grain growth inhibition was higher in the nanocomposites dispersed with fine SiC. SiC particles were dispersed uniformly inside Si3N4 matrix grains and on grain boundaries. When the fine SiC particles were added, large fraction of the SiC particles was trapped inside the grains. On the other hand, when the large SiC particles were added, most of the SiC particles were located on grain boundaries. Typically, the fraction of SiC particles located at grain boundaries was higher in the specimen prepared from $\beta$-Si3N4 than in the specimen prepared from $\alpha$-Si3N4.

  • PDF

Effect of SiC Dispersion of $\beta$-Sialon Prepared from Wando Pyrophylite (완도납석으로부터 제조한 $\beta$-Sialon에 대한 SiC의 복합화 효과)

  • Lee, Hong-Lim;Kim, Shin;Lee, Hyung-Jik
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.261-267
    • /
    • 1988
  • $\beta$-Sialon powder was prepared by the reduction-nitridation reaction from the mixture of Wando Pyrophyllite and carbon black at 135$0^{\circ}C$ in $N_2$ atmosphere. $\beta$-SiC powder was added to the prepared $\beta$-Sialon powder to make $\beta$-Sialon-SiC composite. The $\beta$-Sialon-SiC composites were sintered pressurelessly at 175$0^{\circ}C$ for 2h, using $Y_2O_3$ and $ZrO_2$(monoclinic) as sintering aids. Comparatively higher values of the fracture toughness (3.8 MN/㎥/2), M.O.R. (470 MN/$m^2$) and vickers microhardness (13.7 MN/$m^2$) were obtained when 10 wt% $Y_2O_3$ was added as a sintering aid. The improved fracture toughness and M.O.R. are assumed to be the results of crack deflection and crack branching by the second phase SiC particles.

  • PDF

Effect of Starting Crystallographic Phase on the Mechanical Properties of Hot-Pressed SiC Ceramics (초기분말의 결정상이 $Al_2O_3$를 소결 조제로한 고온가압 SiC 세라믹스의 기계적 특성에 미치는 영향)

  • 정동익;강을손;최원봉;백용기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.232-240
    • /
    • 1992
  • Densification behavior, microstructural evolution, and mechanical properties of hot-pressed specimens using $\beta$-SiC and $\alpha$-SiC powder with Al2O3 additive were studied. Beta-SiC powder was fully densified as 205$0^{\circ}C$, but $\alpha$-SiC powder was at 210$0^{\circ}C$. The maximum flexural strength and the fracture toughness of the specimen hot-pressed using $\beta$-SiC powder were 681 MPa and 6.7 MPa{{{{ SQRT {m } }}, and thosevalues of specimen hot-pressed using $\alpha$-SiC powder were 452 MPa and 4.7 MPa{{{{ SQRT {m } }}, respectively. The strength superiority of specimen hot-pressed using $\beta$-SiC powder was due to the finer grain size, and higher density. The higher toughness of specimen hot-pressed using $\beta$-SiC powder than $\alpha$-SiC powder than $\alpha$-SiC powder was due to the crack deflection mechanism arised from the difference of thermal expansion coefficient between $\alpha$ and $\beta$-SiC phases which were co-existed in the sintered body.

  • PDF

Mechanical Properties and Microstructures of Alumina Composites Reinforced with SiC Whiskers and TiC Particles (SiC 휘스커 및 TiC 입자 강화 알루미나 복합재료의 기계적 성질과 미세조직)

  • 이영규;김준규;조원승;최상욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.792-798
    • /
    • 2000
  • Alumina composites reinforced with SiC whiskers only or combinded with TiC particles were prepared by hot-pressing at 1850$^{\circ}C$ for 1h. The mechanical properties and microstructures of composites were investigated in this study. By of addition either 20 vol% SiC whiskers or 20 vol% TiC particles, the flexural strength fo alumina was increased from 360 MPa to 650 MPa or 730 MPa, respectively, and the KIC was also increased from 3.5 MPa$.$m1/2 to 5.5MPa$.$m1/2 or 4.4MPa$.$m1/2, respectively. In the case of composites with 20 vol% SiC whiskers and 2 vol% TiC particles. The flexural strength and KIC showed relatively high value of 800 MPa and 5.3MPa$.$m1/2, respectively. The improvement of mechanical properties was considered to be due to both the smaller average grain size and the crack deflection.

  • PDF

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite (용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질)

  • Kim, Min-Soo;Cho, Kyung-Mox;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

수송기계 엔진용 3C-SiC 마이크로 압력센서의 제작

  • Han, Gi-Bong;Jeong, Gwi-Sang
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.10-13
    • /
    • 2006
  • This paper describes on the fabrication and characteristics of a 3C-SiC (Silicon Carbide) micro pressure sensor for harsh environment applications. The implemented micro pressure sensor used 3C-SiC thin-films heteroepitaxially grown on SOI (Si-on-insulator) structures. This sensor takes advantages of the good mechanical properties of Si as diaphragms fabricated by D-RIE technology and temperature properties of 3C-SiC piezoresistors. The fabricated pressure sensors were tasted at temperature up to $250^{\circ}C$ and indicated a sensitivity of 0.46 mV/V*bar at room temperature and 0.28 mV/V*bar at $250^{\circ}C$. The fabricated 3C-Sic/SOI pressure sensor presents a high-sensitivity and excel lent temperature stability.

  • PDF

Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films (In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.