• 제목/요약/키워드: SiC/SiC composites

검색결과 738건 처리시간 0.028초

SiC 휘스커 강화 질화규소 복합재료의 기계작 성질에 미치는 카본 코팅 SiC 휘스커의 영향 (Effects of Carbon-coated SiC Whiskers on the Mechanical Properties of SiC Whisker Reinforced Silicon Nitride Ceramic Composite)

  • 배인경;이영규;조원승;최상욱;장병국;임실묵
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1007-1015
    • /
    • 1999
  • The Si3N4 composites reinforced with carbon-coated SiC whiskers were fabricated by hot-pressing at 180$0^{\circ}C$ for 2 hours to examine the effects of carbon-coated whiskers on the mechanical properties of SiC whisker reinforced Si3N4 composites. The flexural strength of the Si3N4 composites and Si3N4 monolith respectively. The weak interfacial bond between carbon-coated SiC whiskers and Si3N4 matrix which enhances the crack deflection and whisker pull-out could contribute to the improvement of mechanical properties of the composites.

  • PDF

$Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성 (Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials)

  • 임흥준;김영한;한경섭
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.

액상소결 $SiC_f$/SiC 복합재료의 미세조직 및 강도특성 (Microstructure and Strength Property of Liquid Phase Sintered $SiC_f$/SiC Composites)

  • 이문희;조경서;이상필;이진경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.234-238
    • /
    • 2008
  • The efficiency of fiber reinforced CMC(ceramic matrix composite) on the SiC materials have been investigated, in conjunction with the fabrication process by liquid phase sintering and the characterization. LPS-$SiC_f$/SiC composites was studied with the detailed analysis such as the microstructure, sintered density, flexural strength and fracture behavior. The applicability of carbon interfacial layer has been also investigated in the LPS process. Submicron SiC powder with the constant total amount and composition ratio of $Al_2O_3,\;Y_2O_3$ as sintering additives was used in order to promote the performance of the SiC matrix material. LPS-$SiC_f$/SiC composites were fabricated with hot press under the sintering temperature and applied pressure of $1820^{\circ}C$ and 20MPa for 1hr. The typical property of monolithic LPS-SiC materials was compared with LPS-$SiC_f$/SiC composites.

  • PDF

제조방법에 따른 Al2O3-SiCw 복합체의 특성 (Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods)

  • 이대엽;윤당혁
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.

고분자 열분해에 의한 $MoSi_2$/SiC 세라믹 복합체 ($MoSi_2$/SiC Ceramic Composites Prepared by Polymer Pyrolysis)

  • 김범섭;김득중;김동표
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.805-810
    • /
    • 2000
  • The formation, microstructure and properties of MoSi2/SiC ceramic composites by polymer pyrolysis were investigated for the application of heating element material. Polymethylsiloxanes were mixed with Si, SiC, MoSi2 as filler and ceramic composites prepared by pyrolysis in N2 atmosphere at 1320~145$0^{\circ}C$ were studied. Dimensional change, density variation and phases were analyzed and correlated to the resulting material properties. Microstructures of ceramic composite prepared by polymer pyrolysis were composed of MoSi2, SiC and silicon oxycarbide glass matrix. Depending on the pyrolysis conditions, ceramic composites with a density of 86~90 TD%, a fracture strength of 213~284 MPa, a thermal expansion coefficient of 4~7$\times$10-6 were obtained. The electrical resistivity of the specimen decreased with increasing of temperature up to 50$0^{\circ}C$.

  • PDF

Effects of the SiC Particle Size and Content on the Sintering and Mechanical Behaviors of $Al_2O_3$/SiC Particulate Composites

  • Ryu, Jung-Ho;Lee, Jae-Hyung
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.199-207
    • /
    • 1997
  • $Al_2O_3$/SiC particulate composites were fabircated by pressureless sintering. The dispersed phase was SiC of which the content was varied from 1.0 to 10 vol%. Three SiC powders having different median diameters from 0.28 $\mu\textrm{m}$ to 1.9 $\mu\textrm{m}$ were used. The microstructure became finer and more uniform as the SiC content increased except the 10 vol% specimens, which were sintered at a higher temperature. Under the same sintering condition, densification as well as grain growth was retarded more severly when the SiC content was higher or the SiC particle size was smaller. The highest flexural strength obtained at 5.0 vol% SiC regardless of the SiC particle size seemed to be owing to the finer and more uniform microstructures of the specimens. Annealing of the specimens at $1300^{\circ}C$ improved the strength in general and this annealing effect was good for the specimens containing as low as 1.0 vol% of SiC. Fracture toughness did not change appreciably with the SiC content but, for the composites containing 10 vol% SiC, a significantly higher toughness was obtained with the specimen containing 1.9$\mu\textrm{m}$ SiC particles.

  • PDF

SiC 복합체 보호막 금속 피복관의 개발 및 고온산화 특성 분석 (Development of a Metal Cladding with Protective SiC Composites and the Characteristics on High temperature Oxidation)

  • 노선호;이동희;박광헌
    • 한국표면공학회지
    • /
    • 제48권5호
    • /
    • pp.218-226
    • /
    • 2015
  • The goal of this study is to investigate a metal cladding that contains SiC composites as a protective layer and analysis the characteristics of the specimens on high temperature oxidation To make SiC composites, the current process needs a high temperature (about $1100^{\circ}C$) for the infiltration of fixing materials such as SiC. To improve this situation, we need a low temperature process. In this study, we developed a low temperature process for making SiC composites on the metal layer, and we have made two kinds: cladding with protective SiC composites made by polycarbosilane(PCS), and a PCS filling method using supercritical carbon dioxide. A corrosion test at $1200^{\circ}C$ in a mixed steam and Ar atmosphere was performed on these specimens. The result show that the cladding with protective SiC composites have excellent oxidation suprression rates. This study can be said to have developed new metal cladding with enhanced durability by using SiC composite as protective films of metal cladding instead of simple coating film.

Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration

  • Lee, Ho Wook;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.453-460
    • /
    • 2019
  • To reduce residual pores of composites and obtain a dense matrix, SiCf/SiC composites were fabricated by chemical vapor deposition (CVI) using SiC nanorods. SiC nanorods were uniformly grown in the thickness direction of the composite preform when the reaction pressure was maintained at 50 torr or 100 torr at 1,100℃. When SiC nanorods were grown, the densities of the composites were 2.57 ~ 2.65 g/㎤, higher than that of the composite density of 2.47 g/㎤ for non-growing of SiC nanorods under the same conditions; grown nanorods had uniform microstructure with reduced large pores between bundles. The flexural strength, fracture toughness and thermal conductivity (room temperature) of the SiC nanorod grown composites were 412 ~ 432 MPa, 13.79 ~ 14.94 MPa·m1/2 and 11.51 ~11.89 W/m·K, which were increases of 30%, 25%, and 25% compared to the untreated composite, respectively.

대용량 SiC 나노입자 강화 에폭시 복합재료의 새로운 분산방법 (A New Mixing Method of SiC Nanoparticle Reinforced Epoxy Composites with Large Concentration of SiC Nanoparticle)

  • 권동준;신평수;김종현;박종만
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.223-229
    • /
    • 2016
  • SiC 나노입자는 고분자 수지의 굴곡특성을 강화하기 위해 사용된다. 본 연구는 대용량 SiC 나노입자가 함유된 에폭시 수지를 제조하고 분산도를 평가한 것에 관한 내용이다. SiC 나노입자를 혼합하는 과정에 교반기와 초음파 분쇄기를 동시에 사용하여 20 wt%의 SiC 나노입자 강화 에폭시 복합재료를 제조하였다. 교반기와 분쇄기를 동시에 이용하는 방법으로 분산속도와 분산도가 개선됨을 기계적 물성 평가와 FE-SEM 결과로 확인하였다. 이러한 결과로 SiC 나노입자의 분산 모델을 구축하였다. 궁극적으로, 탄소섬유(UD 타입)와 20 wt% SiC 나노입자 강화 에폭시 수지를 사용하여 복합재료를 제조하였다. 교반기와 분쇄기를 동시에 사용했을 경우 초음파 분쇄기만 이용했을 경우에 비해 우수한 복합재료의 물성을 나타내었다.

SPS 소결에 의한 $SiC-ZrB_2$ 도전성 세라믹 복합체 특성 (Properties of $SiC-ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering)

  • 주진영;이희승;조성만;이정훈;김철호;박진형;신용덕
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1757-1763
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between ${\beta}-SiC$ and $ZrB_2$ were not observed in the XRD analysis. The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.93[%], 74.62[%], 74.99[%] and 72.61[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The lowest flexural strength, 108.79[MPa], shown in SiC+15[vol.%] $ZrB_2$ composite and the highest - 220.15[MPa] - in SiC+20[vol.%] $ZrB_2$composite at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites moves in accord with that of the relative density. The electrical resistivities of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 4.57${\times}10^{-1}$, 2.13${\times}10^{-1}$, 1.53${\times}10^{-1}$ and 6.37${\times}10^{-2}$[${\Omega}$ cm] at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$. SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. The declination of V-I characteristics of SiC+20[vol.%]$ZrB_2$ composite is 3.72${\times}10^{-1}$. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode above 1000[$^{\circ}C$]