• Title/Summary/Keyword: Si-nanocrystallites

Search Result 24, Processing Time 0.035 seconds

Study on the Luminescence of Si Nanocrystallites on Si Substrate fabricated by Changing the Wavelength of Pulsed Laser Deposition (펄스레이저 증착법의 레이저 파장변환에 의한 실리콘 나노결정의 발광 특성 연구)

  • 김종훈;전경아;최진백;이상렬
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.169-172
    • /
    • 2003
  • Silicon nanocrystalline thin films on p-type (100) silicon substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355, 532, and 1064 nm. The base vacuum in the chamber was down to $10^-6$ Torr and the laser energy densities were 1.0~3.0 J/$\textrm{cm}^2$ After deposition, silicon nanocrystalline thin films have been annealed at nitrogen gas. Strong Blue and green luminescence from silicon nanocrystalline thin films have been observed at room temperature by photoluminescence and its peak energies shift to green when the wavelength is increased from 355 to 1064 nm.

Formation of Silicon nanocrystallites by ion beam assisted electron beam deposition

  • Won Chel Choi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.68-69
    • /
    • 1998
  • Nano-crystalline silicon(nc-Si) thin films were directly depposited by ion beam assisted electron beam depposition (IBAED) method. The visibe luminescence in IBAED sampples were originated from not an oxygen bond but Si nano-crystallites. And we can conclude that the ion beam would be contribute to the suppression of the Si-O bond formation.

  • PDF

Variation in the Nanostructural Features of the nc-Si:H Thin Films with Substrate Temperature (수소화된 나노결정 실리콘 박막의 기판온도에 따른 나노구조 변화)

  • Nam, Hee-Jong;Son, Jong-Ick;Cho, Nam-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.359-365
    • /
    • 2013
  • We investigated the nanostructural, chemical and optical properties of nc-Si:H films according to deposition conditions. Plasma enhanced chemical vapor deposition(PECVD) techniques were used to produce nc-Si:H thin films. The hydrogen dilution ratio in the precursors, [$SiH_4/H_2$], was fixed at 0.03; the substrate temperature was varied from room temperature to $600^{\circ}C$. By raising the substrates temperature up to $400^{\circ}C$, the nanocrystalite size was increased from ~2 to ~7 nm and the Si crystal volume fraction was varied from ~9 to ~45% to reach their maximum values. In high-resolution transmission electron microscopy(HRTEM) images, Si nanocrystallites were observed and the crystallite size appeared to correspond to the crystal size values obtained by X-ray diffraction(XRD) and Raman Spectroscopy. The intensity of high-resolution electron energy loss spectroscopy(EELS) peaks at ~99.9 eV(Si $L_{2,3}$ edge) was sensitively varied depending on the formation of Si nanocrystallites in the films. With increasing substrate temperatures, from room temperature to $600^{\circ}C$, the optical band gap of the nc-Si:H films was decreased from 2.4 to 1.9 eV, and the relative fraction of Si-H bonds in the films was increased from 19.9 to 32.9%. The variation in the nanostructural as well as chemical features of the films with substrate temperature appears to be well related to the results of the differential scanning calorimeter measurements, in which heat-absorption started at a substrate temperature of $180^{\circ}C$ and the maximum peak was observed at ${\sim}370^{\circ}C$.

Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Flms Fabricated by Pulsed Laser Deposilion (펄스 레이저 증착법을 이용한 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구)

  • 김종훈;전경아;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.127-130
    • /
    • 2001
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films depending on the variation of the annealing temperature.

  • PDF

Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Films Prepared by Pulsed Laser Deposition (펄스 레이저 증착법으로 성장된 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구)

  • 김종훈;전경아;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 2002
  • Si thin films on p-type (100) Si substrate have been prepared by a pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films with the variation of the annealing temperature.

Variation of the Nanostructural and Optical Features of Porous Silicon with pH Conditions (pH 조건에 따른 기공성 실리콘의 나노구조 및 광학적 특성의 변화)

  • Kim, Hyo-Han;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • The effect of chemical treatments of porous silicon in organic solvents on its nanostructural and optical features was investigated. When the porous Si was dipped in the organic solvent with various PH values, the morphological, chemical, and structural properties of the porous silicon was sensitively affected by the chemical conditions of the solvents. The size of silicon nanocrystallites in the porous silicon decreased from 5.4 to 3.1 nm with increasing pH values from 1 to 14. After the samples were dipped in the organic solvents, the Si-O-H bonding intensity was increased while that of Si-H bonding decreased. Photoluminescence peaks shifted to a shorter wavelength region in the range of 583 to 735 nm as the pH value increased. PL intensity was affected by the size as well as the volume fraction of the nanocrystalline silicon in the porous silicon.

Effect of Annealing Atmosphere on the La2O3 Nanocrystallite Based Charge Trap Memory

  • Tang, Zhenjie;Zhao, Dongqiu;Hu, Huiping;Li, Rong;Yin, Jiang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.73-76
    • /
    • 2014
  • $Pt/Al_2O_3/La_2Si_5O_x/SiO_2/Si$ charge trap memory capacitors were prepared, in which the $La_2Si_5O_x$ film was used as the charge trapping layer, and the effects of post annealing atmospheres ($NH_3$ and $N_2$) on their memory characteristics were investigated. $La_2O_3$ nanocrystallites, as the storage nodes, precipitated from the amorphous $La_2Si_5O_x$ film during rapid thermal annealing. The $NH_3$ annealed memory capacitor showed higher charge storage performances than either the capacitor without annealing or the capacitor annealed in $N_2$. The memory characteristics were enhanced because more nitrogen was incorporated at the $La_2Si_5O_x/SiO_2$ interface and interfacial reaction was suppressed after the $NH_3$ annealing treatment.

Characterization of hydrogenated nanocrystalline silicon thin films prepared with various negative DC biases (직류 바이어스를 이용한 나노결정 실리콘의 구조 및 광학적 특성)

  • Shim, Jae-Hyun;Cho, Nam-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.37-37
    • /
    • 2008
  • Hydrogenated nanocrystalline Si (nc-Si:H) thin films were prepared by plasma enhanced chemical vapor deposition (PECVD). The films were deposited with a radio frequency power of 100 W, while substrates were exposed to direct current (DC) biases in the range from 0 to -400 V. The effects of the DC bias on the formation of nanoscale Si crystallites in the films and on their optical characteristics were investigated. The size of the Si crystallites in the films ranges from ~ 1.9 to ~ 4.1 nm. The relative fraction of the crystallites in the films reached up ~ 56.5 % when the DC bias of -400 V was applied. Based on the variation in the structural, chemical, and optical features of the films with DC bias voltages, a model for the formation of nanostructures of the nc-Si:H films prepared by PECVD was suggested. This model can be utilized to understand the evolution in the size and relative fraction of the nanocrystallites as well as the amorphous matrix in the nc-Si:H films.

  • PDF

Microstructure and Mechanical Properties of Superhard Cr-Si-C-N Coatings Prepared by a Hybrid Coating System (하이브리드 코팅 시스템으로 제조된 초고경도 Cr-Si-C-N 나노복합 코팅막의 미세구조 및 기계적 특성)

  • Jang Chul Sik;Heo Su Jeong;Song Pung Keun;Kim Kwang Ho
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.3
    • /
    • pp.100-105
    • /
    • 2005
  • Cr-Si-C-N coatings were deposited on steel substrate (SKD 11) by a hybrid system of arc ion plating (AIP) and sputtering techniques. From XRD, XPS, and HRTEM analyses, it was found that Cr-Si-C-N had a fine composite microstructure comprising nano-sized crystallites of Cr(C, N) well distributed in the amorphous phase of $Si_3N_4/SiC$ mixture. Microhardness of Cr(C, N) coatings and Cr-Si-N coatings were reported about $\~22 GPa$ and $\~35 GPa$, respectively. As the Si was incorporated into Cr(C, N) coatings, The Cr-Si-C-N coatings having a Si content of $9.2 at.\%$ showed the maximum hardness value. As increased beyond Si content of $9.2 at.\%$, the interaction between nanocrystallites and amorphous phase was gone, the hardness was reduced as dependent on amorphous phase of $Si_3N_4/SiC$. In addition, the average coefficient of Cr-Si-C-N coatings largely decreased compared with Cr(C, N) coatings.

Effective problem mitigation strategy of lithium secondary battery silicon anode utilized liquid precursor (에틸벤젠을 이용한 실리콘 산화물 음극재의 효과적인 카본 코팅 전략)

  • Sangryeol Lee;Seongsu Park;Sujong Chae
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.62-68
    • /
    • 2023
  • Silicon (Si) is considered as a promising substitute for the conventional graphite due to its high theoretical specific capacity (3579 mAh/g, Li15Si4) and proper working voltage (~0.3V vs Li+/Li). However, the large volume change of Si during (de)lithiation brings about severe degradation of battery performances, rendering it difficult to be applied in the practical battery directly. As a one feasible candidate of industrial Si anode, silicon monoxide (SiOx) demonstrates great electrochemical stability with its specialized strategy, downsized Si nanocrystallites surrounded by Li+ inactive buffer phase (Li2O and Li4SiO4). Nevertheless, SiOx inherently has the initial irreversible capacity and poor electrical conductivity. To overcome those issues, conformal carbon coating has been performed on SiOx utilizing ethylbenzene as the carbon precursor of chemical vapor deposition (CVD). Through various characterizations, it is confirmed that the carbon is homogeneously coated on the surface of SiOx. Accordingly, the carbon-coated SiOx from CVD using ethylbenzene demonstrates 73% of the first cycle efficiency and great cycle life (88.1% capacity retention at 50th cycle). This work provides a promising synthetic route of the uniform and scalable carbon coating on Si anode for high-energy density.