• Title/Summary/Keyword: Si-based anode material

Search Result 26, Processing Time 0.021 seconds

Fundamental Approach to Capacity Prediction of Si-Alloys as Anode Material for Li-ion Batteries

  • Kim, Jong Su;Umirov, Nurzhan;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2018
  • Various Si-Fe-Al ternary alloys were prepared with the same amount of Si by the melt spinning technique. The feasibility of the capacity prediction approach based on the estimation of the active amount of Si using the phase diagram was practically examined and reported. These predictions were verified by the electrochemical test of fabricated coin cells and other characterization methods. The capacity prediction approach using the phase diagram might be a fundamental and efficient method to accelerate the practical application of Si-based alloys as the anode material for Li-ion batteries. The details on the prediction procedure were discussed.

The Research on Aluminum and Silcon Nanoparticles as Anode Materials for Lithium Ion Batteries (알루미늄 실리콘 나노분말을 이용한 리튬이온전지 음극재료에 관한 연구)

  • Kim, Hyeong-Jo;Tulugan, Kelimu;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • The electrochemical performance and microstructure of Al-Si, Al-Si/C was investigated as anode for lithium ion battery. The Al-Si nano composite with 5 : 1 at% ratio was prepared by arc-discharge nano powder process. However, some of problem is occurred, when Al nano composite was synthesized by this manufacturing. The oxidation film is generated around Al-Si particles for passivating processing in the manufacture. The oxidation film interrupts electrical chemistry reaction during lithium ion insertion/extraction for charge and discharge. Because of the existence the oxidation film, Al-Si first cycle capacity is very lower than other examples. Therefore, carbon synthsized by glucose ($C_6H_{12}O_6$) was conducted to remove the oxidation film covered on the composite. The results showed that the first discharge cycle capacity of Al-Si/C is improved to 113mAh/g comparing with Al-Si (18.6mAh/g). Furthermore, XRD data and TEM images indicate that $Al_4C_3$ crystalline exist in Al-Si/C composite. In addition the Si-Al anode material, in which silicon is more contained was tested by same method as above, it was investigated to check the anode capacity and morphology properties in accordance with changing content of silicon, Si-Al anode has much higher initial discharge capacity(about 500mAh/g) than anode materials based on Aluminum as well as the morphology properties is also very different with the anode based Aluminum.

Transmission Electron Microscope Specimen Preparation of Si-Based Anode Materials for Li-Ion Battery by Using Focused Ion Beam and Ultramicrotome

  • Chae, Jeong Eun;Yang, Jun Mo;Kim, Sung Soo;Park, Ju Cheol
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • A successful transmission electron microscope (TEM) analysis is closely related to the preparation of the TEM specimen and should be followed by the suitable TEM specimen preparation depending on the purpose of analysis and the subject materials. In the case of the Si-based anode material, lithium atoms of formed Li silicide were removed due to ion beam and electron beam during TEM specimen preparation and TEM observation. To overcome the problem, we proposed a new technique to make a TEM specimen without the ion beam damage. In this study, two types of test specimens from the Si-based anode material of Li-ion battery were prepared by respectively adopting the only focused ion beam (FIB) method and the new FIB-ultramicrotome method. TEM analyses of two samples were conducted to compare the Ga ion damage of the test specimen.

Electrochmical Performance of Silicon/Carbon Anode Materials for Li-ion Batteries by Silicon Content (실리콘 함량에 따른 리튬이온전지용 실리콘/탄소 음극소재의 전기화학적 특성)

  • Choi, Yeon-Ji;Kim, Sung-Hoon;Ahn, Wook
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.338-344
    • /
    • 2022
  • It is necessarily required in developing Si-based anode materials for lithium ion batteries, and the related researches are actively working especially in Si-carbon composite material. On the other hand, the photovoltaic and semiconductor industries discard huge amount of Si resources, facing the environmental issue. In this study, recycled Si resource is adopted to obtain Si-carbon composite for LIB(Lithium-Ion Batteries). In order to improve high-capacity retention characteristics and cycle stability of a Si anode material for the LIB, two differenct composites having a mass ratio of silicon and pitch of 1:1 and 2:1 are synthesized and electrochemical characteristics of the anode material manufactured by simple self-assembly method. This result in excellent initial capacity with stable cycle life, and confirming the potential use of recycled Si material for LIB.

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene

  • Ma, Kai
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.317-322
    • /
    • 2021
  • Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.

SiOC Anode Material Derived from Poly(phenyl carbosilane) for Lithium Ion Batteries

  • Lee, Yoon Joo;Ryu, Ji Yeon;Roh, Kwang Chul;Kim, Soo Ryong;Kwon, Woo Teck;Shin, Dong-Geun;Kim, Younghee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.480-484
    • /
    • 2013
  • Since SiOC was introduced as an anode material for lithium ion batteries, it has been studied with different chemical compositions and microstructures using various silicon based inorganic polymers. Poly(phenyl carbosilane) is a SiOC precursor with a high carbon supply in the form of the phenyl unit, and it has been investigated for film applications. Unlike any other siloxane-based polymers, oxygen atoms must be utilized in an oxidation process, and the amount of oxygen is controllable. In this study, SiOC anodes were prepared using poly(phenyl carbosilane) with different heat treatment conditions, and their electrochemical properties as an anode material for lithium ion batteries were studied. In detail, cyclic voltammetry and charge-discharge cycling behavior were evaluated using a half-cell. A SiOC anode which was prepared under a heat treatment condition at $1200^{\circ}C$ after an oxidation step showed stable cyclic performance with a reversible capacity of 360 mAh/g.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF

Multidimensional Conducting Agents for a High-Energy-Density Anode with SiO for Lithium-Ion Batteries

  • Lee, Suhyun;Go, Nakgyu;Ryu, Ji Heon;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.244-249
    • /
    • 2019
  • SiO has a high theoretical capacity as a promising anode material candidate for high-energy-density Li-ion batteries. However, its practical application is still not widely used because of the large volume change that occurs during cycling. In this report, an active material containing a mixture of SiO and graphite was used to improve the insufficient energy density of the conventional anode with the support of multidimensional conducting agents. To relieve the isolation of the active materials from volume changes of SiO/graphite electrode, two types of conducting agents, namely, 1-dimensional VGCF and 0-dimensional Super-P, were introduced. The combination of VGCF and Super-P conducting agents efficiently maintained electrical pathways among particles in the electrode during cycling. We found that the electrochemical performances of cycleability and rate capability were greatly improved by employing the conducting agent combinations of VGCF and Super-P compared with the electrode using only single VGCF or single Super-P. We investigated the detailed failure mechanisms by using systematic electrochemical analyses.

Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process (액체급랭응고법으로 제조된 리튬 이차전지 음극활물질용 Si50Al30Fe20 비정질 합금의 결정화 거동 및 전기화학적 특성)

  • Seo, Deok-Ho;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • This paper reports the microstructure and electrochemical properties of Si-Al-Fe ternary amorphous alloys prepared by rapid solidification as an anode for lithium secondary batteries. The microstructure was analyzed using XRD and HR-TEM with EDS mapping. In accordance with DSC analysis, annealing was performed to crystallize the active nano-Si in the amorphous alloy. Thus, nano-Si forms (~80 nm) embedded in the matrix alloy, such as $Fe_2Al_3Si_3$, $FeSi_2$, and $Fe_{0.42}Si_{2.67}$, were successfully synthesized. The electrode based on the Si-Al-Fe ternary alloy delivered an initial discharge capacity of approximately $700mAh^{g-1}$, and exhibited a high Coulombic efficiency of 99.0~99.6% from the $2^{nd}$ to $70^{th}$ cycles.

Fabrication of SiOx Anode Active Materials Using Spherical Silica Powder and Shape Control Technology (구형 단분산 실리카 분말을 이용한 SiOx 음극활물질 제조 및 형상조절 기술)

  • Ju-Chan Kwon;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.530-536
    • /
    • 2023
  • The theoretical capacity of silicon-based anode materials is more than 10 times higher than the capacity of graphite, so silicon can be used as an alternative to graphite anode materials. However, silicon has a much higher contraction and expansion rate due to lithiation of the anode material during the charge and discharge processes, compared to graphite anode materials, resulting in the pulverization of silicon particles during repeated charge and discharge. To compensate for the above issues, there is a growing interest in SiOx materials with a silica or carbon coating to minimize the expansion of the silicon. In this study, spherical silica (SiO2) was synthesized using TEOS as a starting material for the fabrication of such SiOx through heating in a reduction atmosphere. SiOx powder was produced by adding PVA as a carbon source and inducing the reduction of silica by the carbothermal reduction method. The ratio of TEOS to distilled water, the stirring time, and the amount of PVA added were adjusted to induce size and morphology, resulting in uniform nanosized spherical silica particles. For the reduction of the spherical monodisperse silica particles, a nitrogen gas atmosphere mixed with 5 % hydrogen was applied, and oxygen atoms in the silica were selectively removed by the carbothermal reduction method. The produced SiOx powder was characterized by FE-SEM to examine the morphology and size changes of the particles, and XPS and FT-IR were used to examine the x value (O/Si ratio) of the synthesized SiOx.