• Title/Summary/Keyword: Si-O superlattice

Search Result 22, Processing Time 0.025 seconds

Optoelectronic Properties of Semiconductor-Atomic Superlattice Diode for SOI Applications (SOI 응용을 위한 반도체-원자 초격자 다이오드의 광전자 특성)

  • 서용진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.83-88
    • /
    • 2003
  • The optoelectronic characteristics of semiconducto-atomic superlattice as a function of deposition temperature and annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy(MBE) system. As an experimental result, the superlattice with multilayer Si-O structure showed a stable photoluminescence(PL) and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronics and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in ultra-high speed and lower power CMOS devices in the future, and it can be directly integrated with silicon ULSI processing.

  • PDF

Optoelectronic Characteristics of Hydrogen and Oxygen Annealed Si-O Superlattice Diode

  • Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.16-20
    • /
    • 2001
  • Optoelectronic characteristics of the superlattice diode as a function of deposition temperature and annealing conditions have been studied. The multilayer nanocrystalline silicon/adsorbed oxygen (nc/Si/O) superlattice formed by molecular beam epitaxy (MBE) system. Experimental results showed that deposition temperature of 550$^{\circ}C$, followed by hydrogen annealing leads to best results, in terms of optical photoluminescence (PL) and electrical current-voltage (I-V) characteristics. Consequently, the experimental results of multilayer Si/O superlattic device showed the stable photoluminescence and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic devices, and can be readily integrated with conventional silicon ULSI processing.

  • PDF

Properties of MTiO3 (M = Sr, Ba) and PbM'O3(M'= Ti, Zr) Superlattice Thin Films Fabricated by Laser Ablation

  • Lim, T.M.;Park, J.Y.;Han, J.S.;Hwang, P.G.;Lee, K.H.;Jung, K.W.;Jung, D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.201-204
    • /
    • 2009
  • $BaTiO_3/SrTiO_3$ and $PbTiO_3/PbZrO_3$ superlattice thin films were fabricated on $Pt/Ti/SiO_2/Si$ substrate by the pulsed laser deposition process. The morphologies and physical properties of deposited films were characterized by using X-ray diffractometer, HR-SEM, and Impedance Analyzer. XRD data and SEM images of the films indicate that each layer was well deposited alternatively in the superlattice structure. The dielectric constant of $BaTiO_3/SrTiO_3$ superlattice thin film was higher than that of individual $BaTiO_3$ or $SrTiO_3$ film. Same result was obtained in the $PbTiO_3/PbZrO_3$system. The dielectric constant of a superlattice film was getting higher as the number of layer is increased.

Electrical Characteristics of Si-O Superlattice Diode (Si-O 초격자 다이오드의 전기적 특성)

  • Park, Sung-Woo;Seo, Yong-Jin;Jeong, So-Young;Park, Chang-Jun;Kim, Ki-Wook;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.175-177
    • /
    • 2002
  • Electrical characteristics of the Si-O superlattice diode as a function of annealing conditions have been studied. The nanocrystalline silicon/adsorbed oxygen superlattice formed by molecular beam epitaxy (MBE) system. Consequently, the experimental results of superlattice diode with multilayer Si-O structure showed the stable and good insulating behavior with high breakdown voltage. This is very useful promise for Si-based optoelectronic and quantum device as well as for the replacement of silicon-on-insulator (SOI) in ultra high speed and lower power CMOS devices in the future, and it can be readily integrated with silicon ULSI processing.

  • PDF

Photoluminescence Characteristics of Si-O Superlattice Structure (Si-O 초격자 구조의 포토루미네슨스 특성)

  • Jeong, So-Young;Seo, Yong-Jin;Park, Sung-Woo;Lee, Kyoung-Jin;Kim, Chul-Bok;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.202-205
    • /
    • 2002
  • The photoluminescence (PL) characteristics of the silicon-oxygen(Si-O) superlattice formed by molecular beam epitaxy (MBE) were studied. To confirm the presence of the nanocrystalline Si structure, Raman scattering measurement was performed. The blue shift was observed in the PL peak of the oxygen-annealed sample, compared to the hydrogen-annealed sample, which is due to a contribution of smaller crystallites. Our results determine the right direction for the fabrication of silicon-based optoelectronic and quantum devices as well as for the replacement of silicon-on-insulator (SOI) in high-speed and low-power silicon MOSFET devices in the future.

  • PDF

Characteristics of Semiconductor-Atomic Superlattice for SOI Applications (SOI 응용을 위한 반도체-원자 초격자 구조의 특성)

  • 서용진
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.312-315
    • /
    • 2004
  • The monolayer of oxygen atoms sandwiched between the adjacent nanocrystalline silicon layers was formed by ultra high vacuum-chemical vapor deposition (UHV-CVD). This multilayer Si-O structure forms a new type of superlattice, semiconductor-atomic superlattice (SAS). According to the experimental results, high-resolution cross-sectional transmission electron microscopy (HRTEM) shows epitaxial system. Also, the current-voltage (Ⅰ-Ⅴ) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the system may form an epitaxially grown insulating layer as possible replacement of silicon-on-insulator (SOI), a scheme investigated as future generation of high efficient and high density CMOS on SOI.

Current-Voltage and Conductance Characteristics of Silicon-based Quantum Electron Device (실리콘 양자전자소자의 전류-전압 및 컨덕턴스 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.811-816
    • /
    • 2019
  • The silicon-adsorbed oxygen(Si-O) superlattice grown by ultra high vacuum-chemical vapor deposition(UHV-CVD) was introduced as an epitaxial barrier for silicon quantum electron devices. The current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the Si-O superlattice can serve as an epitaxially grown insulating layer as possible replacement of silicon-on-insulator(SOI). This thick barrier may be useful as an epitaxial insulating gate for field effect transistors(FETs). The rationale is that it should be possible to fabricate a FET on top of another FET, moving one step closer to the ultimate goal of future silicon-based three-dimensional integrated circuit(3DIC).

Characteristics of Semiconductor-Atomic Superlattice for SOI Applications (SOI 응용을 위한 반도체-원자 초격자 구조의 특성)

  • Seo, Yong-Jin;Park, Sung-Woo;Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Chang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.180-183
    • /
    • 2003
  • The monolayer of oxygen atoms sandwitched between the adjacent nanocrystalline silicon layers was formed by ultra high vacuum-chemical vapor deposition (UHV-CVD). This multi-layer Si-O structure forms a new type of superlattice, semiconductor-atomic superattice (SAS). According to the experimental results, high-resolution cross-sectional transmission electron microscopy (HRTEM) shows epitaxial system. Also, the current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the system may form an epitaxially grown insulating layer as possible replacement of silicon-on-insulator (SOI), a scheme investigated as future generation of high efficient and high density CMOS on SOI.

  • PDF

Fabrication of Si quantum dots superlattice embedded in SiC matrix (SiC 매트릭스를 이용한 실리콘 양자점 초격자 박막 제조)

  • Kim, Hyun-Jong;Moon, Ji-Hyun;Cho, Jun-Sik;Chang, Bo-Yun;Ko, Chang-Hyun;Park, Sang-Hyun;Yoon, Kyung-Hoon;Song, Jin-Soo;O, Byung-Sung;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.163-166
    • /
    • 2009
  • 다중접합 초 고효율 태양전지 제조를 위해 SiC 매트릭스를 이용한 실리콘 양자점 초격자 박막을 제조하고 특성을 분석하였다. $SiC/Si_{1-x}C_x$(x ~ 0.31)로 실리콘 양자점 초격자 박막을 Si과 C target을 이용한 co-sputtering법으로 초격자 박막을 제조하고, $1000^{\circ}C$에서 20분간 열처리를 하였다. high resolution transmission electron microscopy 사진으로 약1~7nm 크기인 양자점 생성과 분포 밀도를 확인할 수 있었으며, grazing incident X-ray diffraction (GIXRD)를 통해서 Si(111)과 $\beta$-SiC(111)이 생성되었음을 알 수 있었다. Auger electron spectroscopy (AES)측정에서 stoichiometric SiC층과 Si-rich SiC층의 Si 원자농도 (56%, 69%)와 C 원자 농도 (44%, 31%)를 알 수 있었으며, Fourier transform infra-red spectroscopy (FTIR)측정에서 SiC 픽의 위치가 767에서 $800cm^{-1}$으로 이동하는 것을 알 수 있었다.

  • PDF