• Title/Summary/Keyword: Si-O bond

Search Result 209, Processing Time 0.026 seconds

The Effects of Coupling Agent and Crosslinking Agent in the Synthesis of Acrylic Pressure Sensitive Adhesive for Polarizer Film (편광필름용 아크릴 점착제의 합성에서 커플링제와 가교제의 효과)

  • Lim, Chang-Hyuk;Ryu, Hoon;Cho, Ur-Ryong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.319-325
    • /
    • 2009
  • The solution polymerization was conducted to synthesize pressure sensitive adhesive for polarizer film using acrylic monomers. 2-Ethylhexylacrylate, butylacrylate, acrylic acid were used as acrylic monomers. The ratio was 2-ethylliexylacrylate:butylacrylate:acrylic acid=25:50:3.6 by reflecting $-40^{\circ}C$ of glass transition temperature in the pressure sensitive adhesive. When 1 wt% of coupling agent was added to the polymerized pressure sensitive adhesive, the light transmissivity was significantly increased. This result is due to the enhancement of adhesive power against liquid crystal cell by Si-O bond of coupling agents. Cross-linking agent was added by 0.5, 1.0, and 1.5 wt% with respect to the synthesized polymer. Initial tackiness decreased, while cohesion increased with increasing crosslinking agent. In the analysis of contact angle, the increase of crosslinking agents yielded the enhancement of surface energy, resulting in the decrease of contact angle. From the measurement of heat resistance, the acrylic pressure sensitive adhesive showed excellent heat resistance regardless of change in temperature and contents in crosslinking agent. In the observation of a cutting plane, the increased crosslinking agent represented a smoother and cleaner section. Comprehensively, the optimum additive amount of crosslinking agent was determined to be 1.0 wt% to monomer.

Crystal Structure of a Carbon Monoxide Sorption Complex of Fully $Ca^{2+}$-Exchanged Zeolite X (제올라이트 X 착물의 결정구조)

  • Lee, Seok-Hee;Kim, Yong-Gwon;Jeong, Gyoung-Hwa;Kim, Nam-Seok;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2005
  • The structure of a carbon monoxide sorption complex of dehydrated fully $Ca^{2+}$-exchanged zeolite X, $|Ca_{46}(CO)_{27}|[Si_{100}Al_{92}O_{384}]$-FAU, has been determined in the cubic space group $Fd\;{\overline{3}}$ at $21^{\circ}C$ (a = 24.970(4) ) by single-crystal X-ray diffraction techniques. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous ${Ca(NO_3)_2}$ for three days, followed by dehydration at $400^{\circ}C$ and $2{\times}10^{-6}$ Torr for two days, and exposure to 100 Torr of zeolitically dry carbon monoxide gas at $21^{\circ}C$. The structure was determined in this atmosphere and was refined, using the 356 reflections for which $F_o$ > $4{\sigma}(F_o)$, to the final error indices $R_1$ = 0.059 and $wR_2$ = 0.087. In this structure, $Ca^{2+}$ ions occupy three crystallographic sites. Sixteen $Ca^{2+}$ ions fill the octahedral site I at the centers of hexagonal prisms (Ca-O = 2.415(7) ${\AA}$). The remaining 30 $Ca^{2+}$ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 3 and 27 ions. Each of these $Ca^{2+}$ ions coordinates to three framework oxygens, either at 2.276(10) or 2.298(8) ${\AA}$, respectively. Twenty-seven carbon monoxide molecules have been sorbed per unit cell, three per supercage. Each coordinates to one of the latter 16 site-II $Ca^{2+}$ ions: C-Ca = 2.72(8) ${\AA}$. The imprecisely determined N-C bond length, 1.26(14) ${\AA}$, differs insignificantly from that in carbon monoxide(g), 1.13 ${\AA}$.

Crystallographic Studies of Dehydrated Zeolite-X Reacting with Rubidium Vapor (루비듐 증기로 처리한 탈수한 제올라이트 X의 결정학적 연구)

  • Han, Young Wook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.116-121
    • /
    • 1993
  • A single crystla of zeolite $Na_{78}Rb_{28}-X$ (approximate composition) was prepared by exposing $Na_{92}-X$ at $350^{\circ}C$ to 0.1 Torr of rubidium vapor, and its structure was determined by single-crystal x-ray diffraction methods in the cubic space group, Fd3, ${\alpha}=25.045(4){\AA}$. The structure was refined to the final error indices $R_1=0.082$ and $R_2=0.084$ with 353 for which I>$3{\sigma}(I)$. Only about 28 of the 92 $Na^+$ ions per unit cell were reduced and only about 14 of the 28 $Na^0$ atoms produced were retained within the zeolite. A $Na_5{^{4+}}$ cluster is present within each sodalite cavity. It is a centered tetrahedron (like $CH_4$) with bond $length=2.80(2){\AA}$ and angle tetrahedral by symmetry, and shows the full symmetry of its site. $T_d$, at the center of the sodalite cavity. Each of the four terminal atoms of the $Na_5{^{4+}}$ cluster bond to three framework oxygens at $2.36(2){\AA}$. At the centers of some double 6-rings are sodium atoms which bridge linearly between $Na_5{^{4+}}$ clusters to form agglomerations such as short zig-zag chains $Na_5{^{4+}}$ clusters. Delocalized electrons, located primarily on the sodiums at centers of the sodalite and (likely) double-six-ring cavities, contribute to the stability of the clusters.

  • PDF

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.

Comparison of Pretreatment Method for the Enhancement of CO2 Mineralogied Sequestration using by Serpentine (이산화탄소 광물고정화 효율 증진을 위한 사문석의 전처리 방법의 비교)

  • Jang, Na-Hyung;Park, Sung-Kwon;Shim, Hyun-Min;Kim, Hyung-Taek
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • Since the reaction of mineral fixation proceeds with a very slow rate, the pretreatment method to increases the rate of carbonation reaction should be required. To increase the reactivity of serpentine with $CO_{2}$, two pretreatment methods are performed in this study. The heat treatment is done at $630^{\circ}C$. A heat-treated serpentine shows that the strength of -OH has a lower peak in FT-IR spectrum. Chemical pretreatment is the method of leaching of magnesium from serpentine using sulfuric acid at $75^{\circ}C$ for 1 h. Because the protonation of the oxygen atoms polarizes and weakens the Mg-O-Si bond, the removal of magnesium atoms from the crystal lattice was facilitated. After performing the pre-treatment of serpentine, $CO_{2}$ fixation experiments are performed with treated serpentine in the batch reactor. Heat-treated serpentine is converted into 43% magnesite conversion, whereas untreated serpentine has 27% of magnesite conversion. Although the results of the heat-pretreatment are encouraging, this method is prohibited due to excessive energy consumption. Furthermore chemical pretreatment serpentine routes have been proposed in an effort to avoid the cost prohibitive heat pretreatment, in which the carbonation reaction was conducted at 45 atm and $25^{\circ}C$. Chemical-treated serpentine, in particularly is corresponded to a conversion of 42% of magnesite compared to 24% for the un-treated serpentine.

Surface Complexation Modeling of Cadmium Sorption onto Synthetic Goethite and Quartz (표면착물 모델을 이용한 합성 침철광과 석영의 카드뮴 흡착 모사)

  • Ok, Yong-Sik;Jung, Jin-ho;Lee, Ok-Min;Lim, Soo-kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.210-217
    • /
    • 2003
  • An alternative method to the empirical approach such as Langmuir and Freundlich model, surface complexation model using thermodynamic database is used to simulate adsorption behavior of cadmium for oxide minerals. Sorption of cadmium onto amorphous silica ($SiO_2$) and synthetic goethite (${\alpha}$-FeOOH) at various conditions of pH, initial cadmium loading, oxide concentration, and ionic strength, were investigated. For both oxide minerals, increasing cadmium concentration resulted in right shifting of the sorption curve of cadmium as the function of pH. The $pH_{50}$, where 50% of cadmium sorbed, of goethite (pH 5.25) was much smaller than that of the silica (pH 7.83). The sorption of cadmium onto both minerals were not affected by the background ion strength from $10^{-1}$ to $10^{-2}$ M of $KNO_3$. It indicated that the binding affinity of goethite surface for cadmium is much stronger than that of silica. The strong affinity of oxide mineral for cadmium can be explained by the existence of coordination or covalent bond between cadmium and surface of it.

Strength Characteristics on Sulfuric Acid Corrosion of Recycled PET Polymer Concrete with Different Fillers (충전재 종류에 따른 PET재활용 폴리머콘크리트의 황산부식에 대한 강도 특성)

  • Jo Byung-Wan;Shin Kyung-Chul;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.499-504
    • /
    • 2005
  • Polymer concrete shows excellent mechanical properties and chemical resistance compared with conventional normal cement concrete. The polymer concrete Is drawing a strong interest as high-performance materials in the construction industry Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. Also the recycling of PET in polymer concrete would help solve some of the solid waste problems Posed by plastics and save energy. An objective of this paper is to estimate the damage of sulfuric acid, through investigating recycled PET polymer concrete, immersed at sulfuric acid solution for 84 days. As a result of testing, recycled PET PC, used $CaCO_3$ as filler, makes a problem of appearance and strength if they are exposed for long term at corrosion environment. On the other hand, recycled PET PC, used fly-ash as filler, had less effect on decrease in weight and strength. Recycled PET PC is excellent chemical resistance, resulting in the role of unsaturated polyester resin which consists of polymer chain structure accomplishes bond of aggregates and filler strongly. Also, recycled PET PC, used fly-ash as filler, is stronger resistance of sulfuric acid corrosion than $CaCO_3$, because it is composed of $SiO_2$ and very strong glassy crystal structure. Therefore, recycled PET PC, used fly-ash as filler, is available under corrosion circumstances like sewer pipe or waste disposal plant.

The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels (아세토니트릴 첨가가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Kim, Younghun;Kim, Taehee;Shim, Jong Gil;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.143-148
    • /
    • 2018
  • Sodium silicate based silica aerogels are lower in cost than silica alkoxide based silica aerogels, but the demand is decreasing as their physical properties are lowered. In this research, acetonitrile as a drying control chemical additive (DCCA) is added in the sol state to improve the pore-structural properties of sodium silicate based silica aerogel by preventing the agglomeration of particles and cross-linked bond. The sodium silicate based silica aerogel by ambient pressure drying were prepared by sol-gel process. Acetonitrile/$Na_2SiO_3$ molar ratio of 0, 0.05, 0.1, 0.15, and 0.2 was added to the sol state. The physical properties of the final product were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurements and field emission scanning electron microscopy. It was confirmed that the sample with adding 0.15 molar ratio of acetonitrile and sodium silicate showed a high specific surface area ($577m^2/g$), a high pore volume (3.29 cc/g), and a high porosity (93%) comparable to the pore-structural properties of silica alkoxide based silica aerogels.

Retention of CAD/CAM Metal Copings Cemented on Short Titanium Abutments with Different Cements (짧은 티타늄 지대주에 합착된 CAD/CAM 금속 코핑의 시멘트 종류에 따른 유지력 비교)

  • Kim, Hyo-Jung;Song, Eun-Young;Yoon, Ji-Young;Lee, Si-Ho;Lee, Yong-Keun;Oh, Nam-Sik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • State of problem: Cement-retained implant-supported prostheses are routinely used in dentistry. The use of high strength cements has become more popular with the increasing confidence in the stability of the implant-abutment screw connection and the high survival rates of osseointegrated implants. No clinical data on retention of metal copings using CAD/CAM. To evaluate retention of metal copings using CAD/CAM system bonded to short titanium abutment with four different cements and compare retentive strength of metal copings with sandblasting or without sandblasting before cementation. Forty titanium abutment blocks were fabricated and divided into 4 groups of 10 samples each. Forty metal copings with occlusal hole to allow for retention testing were fabricated using CAD/CAM technology. The four cements were Fujicem(Fuji, Japan), Maxcem Elite(Kerr, USA), Panavia F2.0(Kurarary, Japan) and Superbond C&B(Sunmedical, Japan). The copings were cemented on the titanium abutment according to manufacture's recommendation. All samples were stored for 24h at 37oC in 100% humidity and tested for retention using universal testing machine(Instron) at a crosshead speed of 1.0mm/min. Force at retentive failure was recorded in Newton. The mode of failure was also recorded. Means and standard deviations of loads at failure were analyzed using ANOVA and Paired t-test. Statistical significance was set at P<0.05. Panavia F2.0 provided significantly higher retentive strength than Fujicem, Maxcem Elite(P<0.05). Sandblasting significantly increased bond strength(P<0.05). The mode of failure was cement remaining principally on metal copings. Within the limitation of this study, Panavia F2.0 showed significantly stronger retentive strength than Fujicem, Maxcem Elite(p<0.05). The Ranking order of the cements to retain the copings was Panavia F2.0, Fujicem = Maxcem Elite. Sandblasting significantly increased bond strength(P<0.05). The retentive strength of metal copings on implant abutment were influenced by surface roughness and type of cements.