• Title/Summary/Keyword: Si-DLC

Search Result 132, Processing Time 0.024 seconds

Tribology of Si incorporated Diamond-like Carbon Films

  • Kim, Myoung-Geun;Lee, Kwang-Rveol;Eun, Kwang-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.44-44
    • /
    • 1998
  • It was observed that the friction coefficient decreased with increasing Si concentration in the l ilms. Furthermore, the friction behavior became more s때ble even when very small amount of S Si of less than 0.5 at. % was incorporatA:회 By analyzing the composition of the debris f formed, we could show that the low and stabilized friction coefficient is in마nately relatA:었 w with the formation of the Si rich oxide debris. These result supports the mechanism that the h hydrated silica debris is the reason for low friction coefficient in humid environment. Second e evidence of the role of Si rich oxide debris could be found in the triOO-chemical reactions d during initial stage of triho-test. When the Si concen$\sigma$ation was less than 5 at.%, initial t transient period of high friction coefficient was commonly observed. Mter the transient period, m the friction coefficient becomes lower with increasing contact cycles. The initial $\sigma$ansient p peri여 becomes shorter and the starting and maximum friction coefficients in $\sigma$ansient 야,riod d decreased with increasing Si concentration. Composition of the debris on the wear scar s surface was analyzed by Auger spe따'Oscopy at v뼈ous stages in the initial transient period. W We observed that when the friction coefficient increased in earlier stage of the $\sigma$'ansient p period, iron and oxygen was observed in the debris. However, decrease in the 당iction c coefficient in the later stage of the transient period was associated with the formation of s silicon rich oxide debris. This result also supports the friction mechanism of Si-DLC films t that the formation of Si rich oxide debris results in low friction coefficient in ambient a atmosphere. atmosphere.

  • PDF

Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC

  • Son, Hyeon-Taek;Kim, Dae-Guen;Park, Soon-Sub;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.559-569
    • /
    • 2010
  • The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-$Al_2O_3-Y_2O_3$. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, $\alpha$-SiC offers sinterability that is superior to that of $\beta$-SiC. A maximum density of $3.32\;g/cm^3$ (theoretical density [TD] of 99.7%) was obtained in $\alpha$-SiC-10 wt% ($6Al_2O_3-4Y_2O_3$) sintered at $1850^{\circ}C$ without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of $0.2\;{\mu}m$. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.

Nanotribological characteristics of plasma treated hydrophobic thin films on silicon surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • Yoon, Eui-Sung;Park, Ji-Hyun;Yang, Seung-Ho;Han, Hung-Gu;Kong, Ho-Sung;Koh, Seok-Keun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.35-42
    • /
    • 2001
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface was superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

  • PDF

A Study on the Effect of Si Surface on Diamond Film Growth by AES (Diamond 박막 성장에 미치는 Si 표면 영향의 AES에 의한 연구)

  • Lee, Cheol-Ro;Sin, Yong-Hyeon;Im, Jae-Yeong;Jeong, Gwang-Hwa;Cheon, Byeong-Seon
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.199-208
    • /
    • 1993
  • The effect of nucleation free energy related to Si surface states on diamond film growth behavior has been studied. Ar first, the three kinds of diamond thin films (A, B, C) were deposited on various Si substrates (A-Si, B-Si, C-Si) whose surfaces were polished with 1 ${\mu}m$ diamond paste, 6 ${\mu}m$ Al_2O_3$ powder and 12 ${\mu}m$ Al_2O_3$ powder respectively. And then, relative nucleation free energy calculated is ${\Delta}G_{A-Si}<{\Delta}G_{B-Si}<{\Delta}G_{C-Si}$. Although there are some difference in grain size, shape and nucleated size, the thin films on A-Si and B-Si were diamond including a small amount of DLC which was confirmed by AES, SEM, XRD, and RHEED. Namely, the diamonds of films (B) were not nucleated in scratches but in dents and larger in grain size compare with the film (C) of which diamond sere nucleated not only scratches but also dents. And, the sphere diamond which is not general shape was grown on C-Si. After all, the sphere was turned out to be the diamond including much graphite as a result of the AES in situ depth profiling. Consequently, the diamond shape and quality grown on Si were Changed from the crystal which the (100) and (110) planes were predominent to the crystal in which (111) plane was predominent, and newt to sphere shape diamond including much graphite according as the nucleation free energy increases.

  • PDF

PECVD 증착조건 변화에 따른 a-C;H 박막의 구조 변화

  • 조영옥;노옥환;윤원주;이정근;최영철;이영희;최용각;유수창
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.93-93
    • /
    • 2000
  • 수소화된 비정질 탄소(a-C:H)는 그 증착 조건에 따라서 여러 가지 다른 구조와 특성을 갖게 되며, 특히 DLC(diamond-like carbon) 및 CNT(Carbon nanotube)는 FED (field emission display) 개발 면에서 중요하게 연구되고 있다. 우리는 a-C:H 박막을 PECVD (plasma-enhanced chemical vapor deposition) 방법으로 증착하고 CH4 가스를 사용하였고 기판 온도는 상온-32$0^{\circ}C$ 사이에서 변화되었다. 기판은 Corning 1737 glass, quartz, Si, Ni 등을 사용하였다. 증착 압력과 R.F. power는 각각 0.1-1 Torr 와 12-60w 사이에서 변화되었다. ESR 측정은 X-band(주파수 약 9 GHz)에서 그리고 상온에서 행해졌다. 상온에서의 스핀밀도는 약한-표준피치(weak-pitch standard) 스펙트럼과 비교하여 얻을 수 있었다. 그리고 a-C:H 박막의 구조는 He-Ne laser(파장 632.8 nm)를 이용하는 micro-Raman spectroscopy로 분석하였다. 증착조건에 따른 스핀밀도의 변화 및 Raman 스펙트럼에서의 D-peak, G-peak의 위치 및 반치록, I(D)/I(G) 등을 조사하였다. 증착된 a-C:H 박막은 R.F.power가 증가할수록 대체로 스핀밀도가 증가하였으며, Raman 스펙트럼에서의 I(D)/I(G) 비율은 대체로 감소하였다. 증착된 박막들은 polymer-like Carbon으로 추정되었으며, 스핀밀도가 증가할수록 대체적으로 흑연 구조 영역이 증가됨을 알 수 있었다. 또한 glass나 Si 기판에 비해 Ni 기판위에서 polymer-like Carbon 구조는 향상되는 경향을 보였다.

  • PDF

The latest movement of PVD coating for industrial application (산업용 PVD코팅 기술 최근 동향)

  • Im, Sang-Won
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.33-55
    • /
    • 2016
  • PVD(Physical Vapour Deposition)코팅은 70년대 미국의 Multi-arc이란 기업에 의해 질화물계나 탄화물계 피막 증착이 가능한 아크이온플레팅(Arc Ion Plating) 기술이 산업에 소개되어, 주로 내마모나 내구성을 요구하는 금형, 절삭공구, 산업용 부품 분야 등에 적용되면서 꾸준한 성장세를 거듭해 왔다. 최근 들어 PVD기술은 그 수요의 급증과 더불어 보다 진화된 형태의 코팅장치 및 코팅피막들이 산업에 소개 되고 있다. 먼저 절삭가공분야에는 new composition, nano composite, multi-element composition, multi-layer, SML(Self Modification Layer)등의 코팅피막들이 단독 또는 조합된 형태로 개발되어 철계 소재를 대상으로 고경도 소재의 고속가공, 저경도~중경도 소재의 중속~고속 광범위영역에서 동시 절삭을 가능케 하였고, 비철.비금속 소재 절삭용으로 종전의 가스방식의 DLC(a-C:H)코팅을 훨씬 능가하는 ta-C Plus(Ultra super DLC) 코팅이 개발되어 고 Si함량의 Al-Si계 합금, Cu-W계, 고 섬유 CFRP, CFRM 및 반소결 상태의 세라믹 소재들을 황삭에서 정삭까지 단일 공정으로 절삭이 가능한 고성능 공구들이 개발보급되고 있다. 금속 성형분야에는 고장력 강판을 냉간에서 성형 가능한 Lubricative multi-layer coating, 열간 또는 고온에서 성형이 가능한 functional multi layer과 이형성이 더한층 개선된 dimpled(or embossed) functional multi layer 코팅들이 개발되어 산업현장에 빠르게 확산되고 있다. PVD 코팅의 또 다른 주요 적용분야로 의료분야를 들 수 있는데, 이는 코팅의 대다수가 고경도의 생체친화적인 특성을 가진데 착안되었으며, 흔히 현대성 질환이라 일컫는 과민성 체질, 과체중 및 허약체질 환자의 증가와 각종 재해 및 사고의 증가 및 인간 수명 증가에 따른 인공적인 시술의 요구증가에 편승하여 이 분야의 시장 또한 가파르게 성장하고 있다. 또한 대량으로 양산 적용단계에 접어든 자동차 핵심부품들을 비롯해서 각종 산업용, 방산용 기계 부품에도 성능 향상, 내구성 향상, 환경친화성 등 다양한 목적으로 확대 적용되고 있는 사례들을 본 발표를 통해 간략하게나마 소개하고자 한다.

  • PDF

STRUCTURE AND MACHANICAL PROPERTIES OF a-C:N MULTILAYER FILMS PREPARED BY ARC ION PLATING

  • Kitagawa, Toshihisa;Taki, Yusuke;Takai, Osamu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.512-518
    • /
    • 1996
  • Amorphous carbon nitride (a-C:N) multilayerfilms are formed by using altermating conditions during film deposition in are ion plating process. Because hard a-C:N films prepared with suitable megative bias voltages have large compressive stress, it is difficult to increase film thickness more than 200nm. Preparing multilayer films composed of hard layers and soft layers, we can grow thick multilayer films on Si and SKH steel substrate. The total thickness of multilayer films is more than 1$\mu\textrm{m}$. The multilayer films are several times thicker than the single layer films and almost equal in hardness and internal stress to the single layer ones. X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy reveal that multilayer films equal to single layer films in structure, which is similar to the structure of DLC films.

  • PDF

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Cu-doping Effects (RF 마그네트론 스퍼터링에 의한 ZnO박막의 증착 및 구리 도우핑 효과)

  • Lee, Jin-Bok;Lee, Hye-Jeong;Seo, Su-Hyeong;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.654-664
    • /
    • 2000
  • Thin films of ZnO are deposited by using an RF magnetron sputtering with varying the substrate temperature(RT~39$0^{\circ}C$) and RF power(50~250W). Cu-doped ZnO(denoted by ZnO:Cu) films have also been prepared by co-spputtering of a ZnO target on which some Cu-chips are attached. Different substrate materials, such as Si, $SiO_{2}/Si$, sapphire, DLC/Si, and poly-diamond/Si, are employed to compare the c-axial growth features of deposited ZnO films. Texture coefficient(TC) values for the (002)-preferential growth are estimated from the XRD spectra of deposited films. Optimal ranges of RF powers and substrate temperatures for obtaining high TC values are determined. Effects of Cu-doping conditions, such as relative Cu-chip sputtering areas, $O_{2}/(Ar+O_{2})$ mixing ratios, and reactor pressures, on TC values, electrical resistivities, and relative Cu-compositions of deposited ZnO:Cu films have been systematically investigated. XPS study shows that the relative densities of metallic $Cu(Cu^{0})$ atoms and $CuO(Cu^{2+})$-phases within deposited films may play an important role of determining their electrical resistivities. It should be noted from the experimental results that highly resistive(> $10^{10}{\Omega}cm$ ZnO films with high TC values(> 80%) can be achieved by Cu-doping. SAW devices with ZnO(or Zn):Cu)/IDT/$SiO_{2}$/Si configuration are also fabricated to estimate the effective electric-mechanical coupling coefficient($k_{eff}^{2}$) and the insertion loss. It is observed that the devices using the Cu-doped ZnO films have a higher $k_{eff}^{2}$ and a lower insertion loss, compared with those using the undoped films.

  • PDF

Nano Adhesion and Friction of $DDPO_4$ and $ODPO_4$ SAM Coatings ($DDPO_4$$ODPO_4$SAM 코팅의 나노 응착 및 마찰 특성 연구)

  • ;;;Andrei Ya Grigoriev
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • Nano adhesion between SPM(scanning probe microscope) tips and DDPO$_4$(octadecylphosphoric acid ester.) and ODPO$_4$(octadecylphosphoric acid ester) SAM(self-assembled monolayer.) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes with the applied normal load. DDPO$_4$ and ODPO$_4$ SAM were formed on Ti and TiOx surfaces. Ti and TiOx were coated on the Si wafer by ion sputtering. Adhesion and friction of DDPO$_4$ and ODPO$_4$ SAM surfaces were compared with those of OTS(octadecyltrichlorosilane) SAM and DLC surfaces. DDPO$_4$ and ODPO$_4$ SAM converted the Ti and TiOx surfaces to be hydrophobic. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare surfaces. Work of adhesion was also discussed to explain how the surface was converted into hydrophobic Results also showed that tribological characteristics of DDPO$_4$ and ODPO$_4$ SAM had good properties in the adhesion, friction, wetting angle and work of adhesion. DDPO$_4$ and ODPO$_4$ SAM could be one of the candidates for the bio-MEMS elements.

Development and Applications of TOF-MEIS (Time-of-Flight - Medium Energy Ion Scattering Spectrometry)

  • Yu, K.S.;Kim, Wansup;Park, Kyungsu;Min, Won Ja;Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We have developed and commercialize a time-of-flight - medium energy ion scattering spectrometry (TOF-MEIS) system (model MEIS-K120). MEIS-K120 adapted a large solid acceptance angle detector that results in high collection efficiency, minimized ion beam damage while maintaining a similar energy resolution. In addition, TOF analyzer regards neutrals same to ions which removes the ion neutralization problems in absolute quantitative analysis. A TOF-MEIS system achieves $7{\times}10^{-3}$ energy resolution by utilizing a pulsed ion beam with a pulse width 350 ps and a TOF delay-line-detector with a time resolution of about 85 ps. TOF-MEIS spectra were obtained using 100 keV $He^+$ ions with an ion beam diameter of $10{\mu}m$ with ion dose $1{\times}10^{16}$ in ordinary experimental condition. Among TOF-MEIS applications, we report the quantitative compositional profiling of 3~5 nm CdSe/ZnS QDs, As depth profile and substitutional As ratio of As implanted/annealed Si, Ionic Critical Dimension (CD) for FinFET, Direct Recoil (DR) analysis of hydrogen in diamond like carbon (DLC) and InxGayZnzOn on glass substrate.

  • PDF