• Title/Summary/Keyword: Si-Cr

Search Result 784, Processing Time 0.024 seconds

Back-scattering Characteristic Analysis for SAR Calibration Site (SAR 검보정 Site 구축을 위한 후방 산란 특성 분석)

  • Lee, Taeseung;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.305-319
    • /
    • 2021
  • The overseas calibration sites such as Mongolia used for Korea Multi-purpose Satellite (KOMPSAT-5 or K5), have a disadvantage in that maintenance and repair costs are high and immediate response is difficult when an unexpected problem occurs. Accordingly, the necessity of establishing a domestic SAR calibration site was suggested, but the progress of related research is insignificant. In this paper, we investigated what conditions should be satisfied in terms of backscattering characteristics to construct a site for SAR satellite image quality evaluation and calibration. First of all, it was selected first by applying general indicators such as accessibility and availability among places recommended as satellite image calibration candidate sitesin Korea. Next, three places, site A (Goheung-gun, Jeollanam-do), site B (Jeonju-si, Jeollabuk-do), and site C (Daedeok Research Complex, Daejeon), were selected as the final candidates because they are relatively wide and easy to install AT or CR. Site A, located in Goheung-gun, Jeollanam-do, was best considered in terms of slope measurements, minimum site area to obtain ISLR, uniformity of DN values and backscatter coefficients, interference by strong reflectors, and backscatter clutter level.

Conservation of Chungmugong's Artifacts (보물 제326호 이충무공유물의 과학적 보존)

  • Kwon, Hyuk Nam;Seo, Jung Eun;Ha, Eun Ha;Lee, Han Hyoung;Lee, Eun Woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.62-77
    • /
    • 2011
  • Yi Sunsin's artifacts had been exhibited at Hyeonchungsa in Asan-si, Chungchungnam-do. These artifacts include Janggeom(Long swords), Okno(Jade ornament of Korea traditional hat), Yodae(Waist belt) and Dobae(Peach shaped wine cups) Gudae(Yodae's saucers). These were covered with dust and corroded due to long term display. Condition of these artifacts was examined for a re-opening of Yi Chungmugong Memorial Pavilion on 28 March 2011. Before conservation treatment of the artifacts, scientific analysis was conducted to identify the material of the artifacts. The result showed that the red paint on the hilt of the sword is composed of two layers. Pigments of two layers were found to be hematite and cinnabar mixed with red lead respectively. Mixed layer was assumed to have been applied recently. Also it was found that the blade of the sword was repainted using chrome yellow($PbCrO_4$). Considering the time limit, conservation treatment focused on stabilization of damaged area and prevention of futher risk during display.

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

High Loading for Air Pollution in the Byunsan Peninsula of Korea by an Interplay of the Saemangeum Project and Winter Monsoon

  • Ma, Chang-Jin;Kang, Gong-Unn;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.234-243
    • /
    • 2012
  • The wintertime high loading for atmospheric pollutants is certainly expected in the Byunsan Peninsula of Korea because of a great-scale reclamation project having construction of 33 km tidal sea dike impounding an area of over 40,000 ha and long-range transport. The goal of this study is to trace the origin of this wintertime burden for ambient particulate matter (hereafter called "PM") in the Byunsan Peninsula of Korea. The size-segregated (i.e., cutoff size from 0.01 ${\mu}m$ to 4.7 ${\mu}m$) PM sampling was conducted at a ground-based site of Byunsan Peninsula located in the west coast of Korean Peninsula during the height of dike constructing. Data archived in this study are the mass concentrations of ionic, elemental, and carbonic components in size-fractioned PM. The elemental mass of individual submicrometer particles was also analyzed. The sum of 5-source (i.e., elemental carbon, organic materials, inorganic secondary pollutants, crustal matter, and sea-salts) concentrations shows the bimodal distribution (major and minor peaks formed around $D_p$, 0.65 ${\mu}m$ and $D_p$, 4.7 ${\mu}m$, respectively) by border with 0.19 ${\mu}m$ of cutoff size. The concentrations of EC in $PM_{1.1-0.01}$ in winter and spring times were 4.62 ${\mu}g\;m^{-3}$ and 3.74 ${\mu}g\;m^{-3}$, respectively. Elemental masses of submicron individual particles are classified into two groups, i.e., the major elements (Cl, Al, Si, S, and P) and the minor trace elements. Cluster analysis differentiated the elements in submicron individual particles into 4-cluster. Among them, three clusters are in agreement with the major (Al, Si, S, and P), minor (Fe, Ca, and K), and trace compositions of coal burning. Meanwhile, Cl classified as an independent cluster has different source profile which was mainly due to the Saemangeum seawall project. Some highly toxic elements (e.g., Cr, Mn, and As (and/or Pb)) were also detected in some part of submicron individual PM. As a consequence, the combination of the Saemangeum project and winter monsoon played a considerable part in the double aggravation of wintertime air pollution in the Byunsan Peninsular.

A Floristic Study of Mt. Myeonsan·Myobong (Taebaek-si, Samcheok-si, Bonghwa-gun) in Korea (면산·묘봉(태백시, 삼척시, 봉화군)의 식물상)

  • Nam, Bo Mi;Jeong, Seon;Kim, Min Geun;Chung, Gyu Young
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.501-517
    • /
    • 2014
  • This study was carried out to elucidate the distribution of vascular plants and their usefulness of Mt. Myeonsan (1,245 m) and Myobong (1,168 m) in Gangwon-do and Gyeongsangbuk-do. The vascular plants that were collected 15 times from April 2012 to October 2013 consisted a total of 551 taxa; 96 families, 314 genera, 489 species, 3 subspecies, 54 varieties and 6 forms. The plants that are specially noteworthy are 17 taxa of Korean endemic plants, 2 taxa of Critical Endangered Species (CR), 3 taxa of Endangered Species (EN) and 12 taxa of Vulnerable Species (VU) in rare plants as categorized by the Korean Forest Service. Furthermore, V, IV, III degrees of floristic regional indicator plants as categorized by the Korean Ministry of Environment included 2 taxa, 22 taxa and 26 taxa, respectively. Among them, edible, pasture, medicinal, ornamental, timber, dye, fiber, industrial and unknown usefulness plants included 215 taxa, 184 taxa, 163 taxa, 59 taxa, 17 taxa, 6 taxa, 5 taxa, 5 taxa and 138 taxa, respectively. In addition, 25 taxa of naturalized plants were observed.

Conservation Management Methods and Vascular Plants of Major Sites in Changwon-si (창원시 주요지역의 식물상 및 보전관리방안)

  • Oh, Hyun-Kyung;Kang, Hyun-Mi;Choi, Song-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.4
    • /
    • pp.23-40
    • /
    • 2012
  • The vascular plants of major sites in Changwon-si were listed 456 taxa (9.3% of all 4,881 taxa of vascular plants); 112 families, 293 genera, 371 species, 2 subspecies, 66 varieties and 17 forms. The vascular plants of Changwon-cheon were listed 133 taxa, Junam reservoir were listed 90 taxa, Seongju-sa were listed 293 taxa, and Yungji park were listed 164 taxa. Divided into 456 taxa; woody plants were 160 taxa (35.1%) and herbaceous plants were 296 taxa (64.9%). Furthermore, therophytes (Th) were 111 taxa (24.3%), hemicryptophytes (H) were 75 taxa (16.4%), megaphanerophytes (MM) were 63 taxa (13.8%) showed high proportional ratio in life form. Based on the list of rare plants by the Korea Forest Service and Korea National Arboretum, 10 taxa (1.8% of all 571 taxa of rare plants); Aristolochia contorta (LC), Euryale ferox (VU), Melothrua japonica (LC), Utricularia pilosa (CR), Hydrocharis dubia (LC), Carex idzuroei (DD), Acorus calamus var. angustatus (LC), etc. Based on the list of endemic plants by the Korea National Arboretum, 10 taxa (3.0% of all 328 taxa of endemic plants); Salix pseudolasiogyne, Philadelphus incanus, Indigofera koreana, Lespedeza ${\times}$ maritima, Stewartia pseudocamellia, Weigela subsessilis, Carex okamotoi, etc. Based on the list of specific plants by floral region were total 43 taxa (4.0% of all 1,071 taxa of specific plants); 4 taxa (Euryale ferox, Hydrocharis dubia, Carex idzuroei, etc.) in class IV, 9 taxa (Ilex crenata, Acer palmatum, Stewartia pseudocamellia, Melothria japonica, Fatsia japonica, etc.) in class III, 3 taxa (Caltha palustris var. membranacea, Nymphoides indica, etc.) in class II, 26 taxa (Cyrtomium fortunei, Chloranthus japonicus, Quercus variabilis, Ulmus parvifolia, Aphananthe aspera, etc.) in class I. Based on the list of naturalized plants, 48 taxa (Rumex crispus, Chenopodium album var. album, Amaranthus patulus, Phytolacca american, Brassica juncea var. integrifolia, Potentilla paradoxa, Robinia pseudoacacia, Euphorbia maculata, Oenothera odorata, Cuscuta pentagona, Veronica persica, Plantago lanceolata, Diodia teres, Helianthus tuberosus, Dactylis glomerata, etc.), naturalization rate was 10.5% of all 456 taxa of vascular plants and urbanization index was 15.0% of all 321 taxa of naturalized plants. Ecosystem disturbing wild plants were 3 taxa (Rumex acetocella, Solanum carolinense, Ambrosia artemisiifolia).

Distribution of Vascular Plants in Gallasan (Andong-si.Uiseong-gun, Gyeongbuk) (갈라산(경북 안동시.의성군) 관속식물의 분포)

  • Chung, Gyu-Young;Park, Myung-Soon;Nam, Bo-Mi;Hong, Ki-Nam;Jang, Jin;Jeong, Hyung-Jin;Yoo, Ki-Oug
    • Korean Journal of Plant Resources
    • /
    • v.23 no.1
    • /
    • pp.99-114
    • /
    • 2010
  • This study was carried out to clarify the distribution of vascular plants and their usefulness at Gallasan of Andong-si in Gyeongbuk (596.2 m, N $36^{\circ}29'396"{\sim}36^{\circ}29'356"$, E $128^{\circ}43'841"{\sim}128^{\circ}45'799"$). The vascular plants collected 13 times (April 2006 to August 2009) were consisted of total 424 taxa; 92 families, 273 genera, 365 species, 2 subspecies, 47 varieties and 10 forms. Among them, edible, medicinal, industrial, ornamental and unknown of usefulness plants were 239 taxa, 291 taxa, 109 taxa, 135 taxa, 24 taxa, respectively. Korean endemic plants of this area were 9 taxa, and Law-protected plants by Ministry of Environment were 2 taxa, and the special plants species based on floral region by Ministry of Environment were 7 taxa in grade III category, 1 taxa in grade IV category, 5 taxa in grade V category, rare plants were 1 taxon in critically endangered (CR), 3 taxa endangered species (EN), 2 taxa vulnerable (VU), the naturalized plants were 23 taxa.