• Title/Summary/Keyword: Si-C bond

Search Result 200, Processing Time 0.028 seconds

EFFECT OF THE APPLICATION TIME OF SELF-ETCHING PRIMERS ON THE BONDING OF ENAMEL (자가부식 프라이머의 적용시간이 법랑질 접착에 미치는 영향)

  • Jin, Cheol-Hee;Cho, Young-Gon;Kim, Soo-Mee;Lee, Myeong-Seon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.224-234
    • /
    • 2008
  • The purpose of this study was to compare the normal and two times of application time of six self-etching primers applied to enamel using microshear bond strength (uSBS) test and the finding of scanning electronic microscope (SEM). Crown of sixty human molars were bisected mesiodistally and buccal and lingual enamel of crowns were partially exposed and polished with 600 grit SiC papers. They were divided into one of two equal groups subdivided into one of six equal groups (n = 10) by self-etching primer adhesives. After the same manufacture's adhesive resin and composites were bonded on the enamel surface of each group, the bonded specimens were subjected to uSBS testing and also observed under SEM. In conclusion, generally two times of primer application time increased the enamel uSBS, especially with the statistical increase of bond strength in adhesives involving high-pH primers.

Hydrogeneted Amorphous Carbon Nitride Films on Si(100) Deposited by DC Saddle Field Plasma Enhanced Chemical Vapor Deposition ($N_2/CH_4$가스비에 따른 Hydrogenated Amorphous Carbon Nitride 박막의 특성)

  • 장홍규;김근식;황보상우;이연승;황정남;유영조;김효근
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.242-247
    • /
    • 1998
  • Hydrogenated amorphous carbon nitride[a-C:H(N)] films were deposited on p-type Si(100) at room temperature with bias voltage of 200 V by DC saddle-field plasma-enhanced chemical vapor deposition. Effects of the ratio of $N_2$ to $CH_4$($N_2/CH_4$), in the range of 0 and 4 on such properties as optical properties, microstucture, relative fraction of nitrogen and carbon, etc. of the films have been investigated. The thickness of the a-C:H(N) film was abruptly decreased with the addition of nitrogen, but at $N_2/CH_4$>0.5, the thickness of the film gradually decreased with the increase of the $N_2/CH_4$. The ratio of N to C(N/C) of the films was saturated at 0.25 with the increase of $N_2CH_4$. N-H, C≡N bonds of the films increased but C-H bond decreased with the increase of $N_2CH_4$.Optical band gap energy of the film decreased from 2.53 eV at the ratio of $N_2CH_4$=4.

  • PDF

Synthesis of Mullite Powder from Alkoxides and the Properties of the Mullite-Zircocnia Composites (알콕사이드로부터 Mullite 분말의 합성 및 Mullite-Zirconia 복합체의 특성)

  • 함종근;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.201-210
    • /
    • 1990
  • The mullite-15v/o ZrO2 composites were prepared by dispersing ZrO2-3m/o Y2O3 powders into the mullite matrix in order to improve the mechanical properties of the mullite. The densification and retention of t-ZrO2 in the matrix of synthetic mullite were also investigated. From IR spectroscopic analysis, the obtained amorphous SiO2-Al2O3 powder was observed to have Si-O-Al chemical bond in its structure which might result in the homogeneous mullite composition. The lattice parameter of the mullite powder calcined above 130$0^{\circ}C$ (a0=7.5468$\AA$) is nearly close to the value of stoichiometric mullite (71.8wt% Al2O3, a0=7.5456$\AA$). The sintering behavior, microstructure, flexural strength and fracture toughness of the mullite and mullite-15v/o ZrO2 composites have been studied. The mullite-15v/o ZrO2(+3m/o Y2O3) ceramics with relative densities of 96% were obtained when sintered at 1$600^{\circ}C$. The flexural strength and fractrue toughness of the composites sintered at 1$600^{\circ}C$(calcination temperature of mullite powders ; 125$0^{\circ}C$) had maximum values of 307MPa and 2.50MPa.m1/2, respectively. The fracture toughness improvement in the mullite-ZrO2 cmoposite is assumed to be resulted from the combined effect of the stress-induced phase transformation of tetragonal ZrO2 and the crack deflection due to microcracking by the monoclinic ZrO2 formation.

  • PDF

The study of Ca $F_2$ films for gate insulator application (게이트 절연막 응용을 위한 Ca $F_2$ 박막연구)

  • 김도영;최유신;최석원;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.239-242
    • /
    • 1998
  • Ca $F_2$ films have superior gate insulator properties than conventional gate insulator such as $SiO_2$, Si $N_{x}$, $SiO_{x}$, and T $a_2$ $O_{5}$ to the side of lattice mismatch between Si substrate and interface trap charge density( $D_{it}$). Therefore, this material is enable to apply Thin Film Transistor(TFT) gate insulator. Most of gate oxide film have exhibited problems on high trap charge density, interface state in corporation with O-H bond created by mobile hydrogen and oxygen atom. This paper performed Ca $F_2$ property evaluation as MIM, MIS device fabrication. Ca $F_2$ films were deposited at the various substrate temperature using a thermal evaporation. Ca $F_2$ films was grown as polycrystalline film and showed grain size variation as a function of substrate temperature and RTA post-annealing treatment. C-V, I-V results exhibit almost low $D_{it}$(1.8$\times$10$^{11}$ $cm^{-1}$ /le $V^{-1}$ ) and higher $E_{br}$ (>0.87MV/cm) than reported that formerly. Structural analysis indicate that low $D_{it}$ and high $E_{br}$ were caused by low lattice mismatch(6%) and crystal growth direction. Ca $F_2$ as a gate insulator of TFT are presented in this paper paperaper

  • PDF

Eelctrical and Structural Properties of $CaF_2$Films ($CaF_2$ 박막의 전기적, 구조적 특성)

  • 김도영;최석원;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1122-1127
    • /
    • 1998
  • Group II-AF_2$films such as $CaF_2$, $SrF_2$, and $BaF_2$ have been commonly used many practical applications such as silicon on insulatro(SOI), three-dimensional integrated circuits, buffer layers, and gate dielectrics in filed effect transistor. This paper presents electrical and structural properties of fluoride films as a gate dielectric layer. Conventional gate dielectric materials of TFTs like oxide group exhibited problems on high interface trap charge density($D_it$), and interface state incorporation with O-H bond created by mobile hydrogen and oxygen atoms. To overcome such problems in conventional gate insulators, we have investigated $CaF_2$ films on Si substrates. Fluoride films were deposited using a high vacuum evaporation method on the Si and glass substrate. $CaF_2$ films were preferentially grown in (200) plane direction at room temperature. We were able to achieve a minimum lattice mismatch of 0.74% between Si and $CaF_2$ films. Average roughness of $CaF_2$ films was decreased from 54.1 ${\AA}$ to 8.40 ${\AA}$ as temperature increased form RT and $300^{\circ}C$. Well fabricated MIM device showed breakdown electric field of 1.27 MV/cm and low leakage current of $10^{-10}$ A/$cm^2$. Interface trap charge density between $CaF_2$ film and Si substrate was as low as $1.8{\times}10^{11}cm^{-2}eV^{-1}$.

  • PDF

Synthesis and Characterization of Poly(arylene-ethynylene)s with Ferrocene Unit by Reaction of 1,1'-Bis(ethynyldimethylsilyl)ferrocene and Aromatic Dihalides

  • Lee, In-Sook;Lee, Chong-Gu;Kwak, Young-Woo;Gal, Yeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • New poly(arylene-ethynylene)s with silicon-containing ferrocene moiety in the polymer main chain were synthesized via the C-C bond forming reactions of 1,1´-bis(ethynyldimethylsilyl)ferrocene and various aromatic dihalides in high yields. The aromatic dihalides include 1,4-dibromobenzene, 4,4´-dibromobiphenyl, 9,10-dibromoanthracene, 2,5-dibromopyridine, 2,5-dibromothiophene, and 2,6-diiodo-4-nitroaniline. The polymer structures and properties were characterized by such instrumental methods as NMR $(^1H-,\;^{13}C-,\;and\;^{29}Si-)$, IR, UV-visible spectroscopies and TGA/DSC. The spectral data indicated that the present polymers have the regular alternating structure of 1,1´-bis(ethynyldimethylsilyl)ferrocenylene and arylene units. The resulting polymers were completely soluble in such organic solvents as methylene chloride, chloroform, benzene, chlorobenzene, and THF. The thermal behaviors of the resulting polymers were examined.

The Electrical Properties of High Voltage Silicone Rubber (고전압용 실리콘고무의 전기적 특성)

  • 김성필;송정우;이종필;이수원;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.779-782
    • /
    • 2000
  • Silicone rubbers are first silicone polymers and has named silicone from existence of Si-O bond similar to Keton. Silicon in organic compound has been called silicone, and linear or network polymers. Silicone rubbers have been used as an power insulator because they are well weather proof, ozone proof and have excellent electric characteristics, thermal stability, cold resistance and low surface energy. Especially, it is known that they have very excellent characteristics at 200[$^{\circ}C$]. For this study, we made silicone rubbers as specimens and we measured dielectric loss tangent due to applied voltage at temperature range 25[$^{\circ}C$] to 180[$^{\circ}C$] and frequency range 20[Hz] to 1${\times}$10$\^$6/[Hz] to examine dielectric properties. We measured dielectric loss tangent to study the insulation performance of silicone rubbers.

  • PDF

Electrophilic Attack of the Phenyl Isocyanate Carbon at the Bridging Imido Nitogen: Preparation and Structure of$ Mo_2({\mu-N(CONPh)Ph})({\mu-NPh)(NPh)_2(S_2CNEt_2)_2$

  • 김경;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1211-1216
    • /
    • 1998
  • Bis(diethyldithiocarbamato)ioxomolybdenum(VI), cis-MoO2(S2CNEt2)2, 1, reacted with chlorotrimethylsilane (Me33SiCl) to give a seven-coordinate, pentagonal bipyramidal complex MoOC12(S2CN]Et2)2, 3, in which the oxo ligand is trans to the chloride ligand and the two chloride ligands are mutually cis. The monooxo molybdenum complex bis(diethyidithiocarbamato)oxomolybdenum(IV), MoO(S2CNEt2)2, 2, reacted with phenyl isocyanate (PhNCO) to give an Mo dimer MO2{μ-N(CONPh)Ph}(μ-NPh)(NPh)2(S2CNEt2)2, 4, which contains an Mo-Mo bond, two diethyldithiocarbamato ligands, two terminal imido (NPh) ligands, and two bridging hnido (NPh) ligands. One of the two bridging NPh ligands seemed to have been attacked by the electrophilic phenyl isocyanate carbon, which suggests that the bridging imido NPh ligand is more nucleophilic than the terminal one. Crystallographic data for 3: monoclinic space group P21/c, a=8.908(l) Å, b=17.509(3) Å, c=12.683(2) Å, β=110.15(1)°, Z=4, R(wR2)=0.0611(0.1385). Crystallographic data for 4-THF: orthorhombic space group P212121, a=17.932(4) Å, b=22.715(5) Å, c=11.802(3) Å, Z=4, R(wR2)=0.0585(0.1286).

Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive

  • Lee, Yoon;Woo, Jung-Soo;Eo, Soo-Heang;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.

A Basic Study for Design and Analysis of the Green Wall System (Green Wall 시스템의 설계 및 해석을 위한 기초연구)

  • Park, Si-Sam;Kim, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF