• Title/Summary/Keyword: Si-$Al_2O_3$-Si

Search Result 2,258, Processing Time 0.028 seconds

The Effect of SiON Film on the Blistering Phenomenon of Al2O3 Rear Passivation Layer in PERC Solar Cell

  • Jo, Guk-Hyeon;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.364.1-364.1
    • /
    • 2014
  • 고효율 태양전지로 가기 위해서는 태양전지의 후면 패시베이션은 중요한 역할을 한다. 후면 패시베이션 막으로 사용되는 $Al_2O_3$ 막은 $Al_2O_3/Si$ 계면에서 높은 화학적 패시베이션과 Negative Fixed Charge를 가지고 있어 적합한 Barrier막으로 여겨진다. 하지만 이후에 전면 Metal paste의 소성 공정에 의해 $800^{\circ}C$이상 온도를 올려주게 됨에 따라 $Al_2O_3$ 막 내부에 결합되어 있던 수소들이 방출되어 blister가 생성되고 막 질은 떨어지게 된다. 우리는 blister가 생성되는 것을 방지하기 위한 방법으로 PECVD 장비로 SiNx를 증착하는 공정 중에 $N_2O$ 가스를 첨가하여 SiON 막을 증착하였다. SiON막은 $N_2O$가스량을 조절하여 막의 특성을 변화시키고 변화에 따라 소성시 막에 미치는 영향에 대하여 조사하였다. 공정을 위해 $156{\times}156mm2$, $200{\mu}m$, $0.5-3.0{\Omega}{\cdot}cm$ and p-type 단결정 실리콘 웨이퍼를 사용하였고, $Al_2O_3$ 막을 올리기 전에 RCA Cleaning 실행하였다. ALD 장비를 통해 $Al_2O_3$ 막을 10nm 증착하였고 RF-PECVD 장비로 SiNx막과 SiON막을 80nm 증착하였다. 소성로에서 $850^{\circ}C$ ($680^{\circ}C$) 5초동안 소성하고 QSSPC를 통해 유효 반송자 수명을 알아보았다.

  • PDF

Microstructure and Mechanical Properties of the $Al_2O_3-SiC$ Ceramics Produced by Melt Oxidation (용융산화법으로 제조한 $Al_2O_3-SiC$ 세라믹스의 미세구조와 기계적 성질)

  • ;H. W. Hennicke
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1169-1175
    • /
    • 1994
  • Five Al2O3/SiC/metal composites with four different particle sizes of green SiC abrasive grains are grown by the directed oxidation of an commercially available Al-alloy. Oxidation was conducted in air at 100$0^{\circ}C$, 96 hours long. Slip casted SiC-fillers were placed on the alloy or SiC powder deposited up to the required layer thickness. Their microstructures are described and measurements of density, elastic constants, frexural strength, fracture toughness and work of fracture are reported. The results are compared with those of commercial dense sintered Al2O3. The properties of produced materials have a strong relationship to not only the properties of Al2O3, SiC, Al and Si but also to the phase share and phase distribution. The composite materials are dense (0.5% porosity), tough (KIC = 3.4~6.4 MPa{{{{ SQRT { m} }}), strong ({{{{ sigma }}B = 170~345 MPa) and reasonably shrinkage free producible. The reinforcements is attained mainly through the plastic deformation of ductile metal phase.

  • PDF

Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR (다성분계 현무암질 비정질 규산염의 원자 구조에 대한 고상핵자기 공명 분광분석연구)

  • Park, Sun-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.343-352
    • /
    • 2009
  • High-resolution Solid-state NMR provides element specific and quantitative information and also resolves, otherwise overlapping atomic configurations in multi-component non-crystalline silicates. Here we report the preliminary results on the effect of composition on the structure of CMAS (CaO-MgO-$Al_2O_3-SiO_2$) silicate glasses, as a model system for basaltic magmas, using the high-resolution 1D and 2D solid-state NMR. The $^{27}Al$ MAS NMR spectra for the CMAS silicate glasses show that four-coordinated Al is predominant, demonstrating that $Al^{3+}$ is network forming cation. The peak position moves toward lower frequency about 4.7 ppm with increasing $X_{MgO}$ due to an increase in $Q^4$(4Si) fraction with increasing Si content, indicating that Al are surrounded only by bridging oxygen. $^{17}O$ MAS NMR spectra for $CaAl_2SiO_6$ and $CaMgSi_2O_6$ glasses qualitatively suggest that NBO fraction in the former is smaller than that in $CaMgSi_2O_6$ glasses. As $^{17}O$ 3QMAS NMR spectrum of model quaternary aluminosilicate glass resolved distinct bridging and non-bridging oxygen environments, atomic structure for natural magmas can also be potentially probed using high-resolution 3QMAS NMR.

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al2O3/SiC Composite Ceramics (알루미나 탄화규소 복합세라믹스 균열치유재의 강도와 탄성파 특성)

  • Kim, Hae-Suk;Kim, Mi-Gyeong;Kim, Jin-Uk;An, Seok-Hwan;Nam, Gi-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.425-431
    • /
    • 2007
  • [ $Al_2O_3/SiC$ ]composite ceramics were sintered to evaluate the bending strength and elastic wave characteristics. The three-point bending test was carried out under room temperature. The elastic wave was detected by fracture wave detector. The crack healing behavior was investigated from 1373 K to 1723 K. The bending strength of $Al_2O_3/SiC$ composite by nanocomposite is higher than that of $Al_2O_3$ monolithic. Crack-healing behavior depended on an amount of additive powder $Y_2O_3$. In $Al_2O_3/SiC$ composite ceramics with 3 wt. % $Y_2O_3$ for additive powder, the bending strength at 1573 K is about 100% increase than that of the smooth specimens. From the result of wavelet analysis of elastic wave signal, the smooth specimen and heat treated specimen of $Al_2O_3$ monolithic and $Al_2O_3/SiC$ composite ceramics showed characteristics of frequency about 58 kHz. The strength of $Al_2O_3/SiC$ composite ceramics was a little higher than those of $Al_2O_3$ monolithic. The dominant frequencies were high with increasing of $Y_2O_3$ for additive powder. The dominant frequencies had direct connection with the bending strength.

Preparation of $Al_2O_3$.$2SiO_2$ glass by the sol-gel process (졸-겔법에 의한 $Al_2O_3$.$2SiO_2$ 유리의 제조)

  • Rhee, Jhun;Chi, Ung-Up;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.3-12
    • /
    • 1983
  • In the present study an attempt was made to synthesize the $Al_2O_3$.$2SiO_2$ glass in which atomic ratio is Al:Si=1:1 by sol-gel process. And at such a low temperature as 55$0^{\circ}C$ clear amorphous gel derived glass with Si-O-Al bonding was obtained. $Si(OC_2H_5)_4$ and $Al(NO_3)_3$.$9H_2O$ were used as the precursor and among the mutual solvents only n-butanol gave good results for the synthesis of the gel derived glass. Partial hydrolysis of TEOS with one-fold mol of $H_2O$ prior to the reaction with aluminum nitrate gave the better results., Total oxide content to the total reactants by weight was affective to the results.

  • PDF

A Study on the Synthesis of Alkoxides and Sialon (알콕사이드와 사이알론 합성에 관한 연구)

  • Ho Ha;Heecheol Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.267-275
    • /
    • 1988
  • Fine powders of amorphous $Al_2O_3,\;SiO_2,\;Al_2O_3-SiO_2$ system were prepared by hydrolysis of solutions containing alkoxides, aluminium tri-isopropoxide and silicon tetra-ethoxide. High purity ultrafine ${\beta}-sialon$ powders were prepared by the carbothermal reduction-nitridation of amorphous $Al_2O_3-SiO_2$ powders mixed with carbon black as a reducing agent. In the hydrolysis step the effect of the factors such as pH, reaction temperature and amount of water on the conversion rate of alkoxides to oxides was investigated. In the carbothermal reduction-nitridation the reaction path was assumed by the analysis of intermediates formed in the process of ${\beta}-sialon$ synthesis and the reaction kinetics of ${\beta}-sialon$ formation was considered.

  • PDF

Catalytic Combustion of Methane over Pd-ZSM-5 Catalysts (Pd-ZSM-5 촉매 상에서 메탄의 연소)

  • Eom, Gi Tai;Park, Jin Woo;Ha, Jai-Mok;Hahm, Hyun Sik
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.878-883
    • /
    • 1998
  • The methane combustion reaction was conducted over Pb-ZSM-5 catalysts. ZSM-5 synthesized at low temperature and atomospheric pressure was used as a support. The change of methane conversion with $SiO_2/Al_2O_3$ molar ratio was tested. The methane conversions of the synthesized Pb-ZSM-5 catalyst was compared with those of a commercial Pd-ZSM-5(PQ Co.) and $PdO/{\gamma}-Al_2O_3$. The methane conversion increased with the decrease in $SiO_2/Al_2O_3$ molar ratio. The combustion rate of methane also increased with the decrease in $SiO_2/Al_2O_3$ molar ratio. The synthesized Pb-ZSM-5 showed better methane conversion than that of the commercial one. It is found that a crucial factor in methane combustion reaction is oxygen adsorption strength on the catalysts.

  • PDF

Mechanical Properties of the Pressureless Sintered $Al_2O_3-SiC$ Composite(1) : Dispersion Effects of SiC Powder (상압소결 $Al_2O_3-SiC$계 소결체의 기계적 성질 (I) : SiC분말의 분산효과)

  • 이홍림;김경수;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.231-236
    • /
    • 1988
  • In order to investigate the effect of second phase on $Al_2O_3$ matrix, SiC particles were dispersed in $Al_2O_3$ matrix as a second phase over the content range of 5 vol.% to 20 vol.%. To this mixture, $Y_2O_3$ or $TiO_2$ powders were added as a sintering additive before isostatically pressing and pressurelessly sintering at 180$0^{\circ}C$ for 90 min in $N_2$ atmosphere. With increasing SiC content, relative densities of composites were decreased but mechanical properties of composites were improvjed. In the case of adding $Y_2O_3$ as a sintering additive, maximum values of flexural strength, hardness and fracture toughness were 525 MPa, 17.1 GPa, 4.1 MPa.m1/2 respectively. In the case of adding X$TiO_2$ as a sintering additive, maximum values of flexural strength, hardness were 285 MPa, 12.1 GPa respectively. Improved mechanical properties were found to be the results of grain growth control of $Al_2O_3$ matrix and crack deflection by the second phase SiC particles.

  • PDF

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.