• Title/Summary/Keyword: Si thin-membrane

Search Result 70, Processing Time 0.026 seconds

Fabrication of 3C-SiC micro heaters and its characteristics (3C-SiC 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.311-315
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on AlN(0.1 $\mu$m)/3C-SiC(1.0 $\mu$m) suspended membranes by surface micro-machining technology. The 3C-SiC and AlN thin films which have wide energy band gap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3CSiC RTD(resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR(thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 ppm/$^{\circ}C$ within a temperature range from 25 $^{\circ}C$ to 50 $^{\circ}C$ and -1040 ppm/$^{\circ}C$ at 500 $^{\circ}C$. The micro heater generates the heat about 500 $^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than Pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

Uncooled Pyroelectric Thin-film $(Ba,Sr)TiO_3$ Infrared Detector Thermally Isolated by Dielectric Membrane (유전체 멤브레인에 의해 열차단된 비냉각 초전형 박막 $(Ba,Sr)TiO_3$적외선 검지기)

  • Go, Seong-Yong;Jang, Cheol-Yeong;Kim, Dong-Jeon;Kim, Jin-Seop;Lee, Jae-Sin;Lee, Jeong-Hui;Han, Seok-Yong;Lee, Yong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • Uncooled pyroelectric thin-film (Ba,Sr)TiO$_3$ infrared detectors thermally isolated from Si-substrate by Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-membrane have been fabricated, and figures of merit for detectors were examined. The detector at $25^{\circ}C$ in air showed relatively high voltage responsivity of about 168.8 V/W and low specific detectivity of about 2.6$\times$10$^4$cm.Hz$^{1}$2//W at 1 Hz-chopping frequency because of very small signal-to-noise voltage ratio. It could be found that both thermal noise voltage and thermal time constant of the detector were very large by analyzing dependences of output waveforms on chopping frequency and temperature.

  • PDF

The characteristics of polycrystalline 3C-SiC microhotplates for high temperature M/NEMS (고온 M/NEMS용 3C-SiC 마이크로 히터 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.252-252
    • /
    • 2008
  • The microhotplates consisting of a Pt-ased heating element on AlN/poly 3C-SiC layers were fabricated. The microhotplate has a $600{\mu}m{\times}600{\mu}m$ square shaped membrane which made of $1{\mu}m$ thick ploycrystalline 3C-SiC suspended by four legs. 3C-SiC is known for excellent chemical durability, mechanical strength and sustaining of high temperature. The membrane is fabricated by surface micromachining using oxidized Si sacrificial layer. The Pt thin film is used for heating material and resist temperature sensor. The fabrication methodology allows intergration of an array of heating material and resist temperature detector. For reasons of a short response time and a high sensitivity a uniform temperature profile is desired. The dissipation of microhotplate was examined by a IR thermoviewer and the power consumption was measured. Measured and simulated results are compared and analyzed. Thermal characterization of the microhotplates shows that significant reduction in power consumption was achieved using suspended structure.

  • PDF

The Preferred Orientation of CdSe and CdS Thin Films on the AlOx and SiO2 Templates (AlOx와 SiO2 형판위 CdSe와 CdS 박막의 우선방위(Preferred Orientation) 특성)

  • Lee, Young-Gun;Chang, Ki-Seog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.502-506
    • /
    • 2012
  • In order to find the structural characteristics of the thin films of group II-VI semiconductor compounds compared with those of powder materials, films were made of 4 powders of ZnS, CdS, CdSe, and CdTe(Aldrich), each with 99.99 % purity. For the ZnS/CdS multi-layers, the ZnS layer was coated over the CdS layer on an $AlO_x$ membrane, which served as a protective layer within a vacuum at the average speed of 1 ${\AA}$/sec. After studying the structures of the group II-VI semiconductor thin films by using X-ray spectroscopy, we found that the ZnS, ZnS/CdS, CdS, and CdSe films were hexagonal and exhibited some degree of preferred orientation. Also, the particles of the thin films of II-VI semiconductor compounds proved to be more homogeneous in size compared to those of the powder materials. These results were further verified through scanning electron microscopy(SEM), EDX analysis, and powder and thin film X-ray diffraction.

Synthesis of Microporous Zeolitic Membranes and Application in Alcohol/water Separation (다공성 제올라이트 멤브레인의 합성 및 알코올 /물 분리에의 응용)

  • 김건중;남세종
    • Membrane Journal
    • /
    • v.9 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • A and 2SM-5 type zeoli tic crystal films were synthesized on porous supports from the reaction mixture of 1.9 ${SiO}_2$1.5 $Na_20-Al_2O_3-40$ $H_20$ and $Si0_2$-0.l3 $Na_2O$-52 $H_20$-O.l2 TPAOH composition, respectively. The zeolite films were characterized by XRD and SEM. The 2SM -5 crystals grown on the porous matrix were very closely bound together. It was so difficult to obtain the perfectly intergrown crystals in the case of A-type zeolite and this crystal was transformed into P-type zeolite membrane with a prolonged reaction time. The densely intergrown A type zeolite crystal membrane could be also synthesized by the hydrothermal treatment at 100$^{\cirt}C$ after pressing the reaction mixture without addition of water. The pervaporation performance of the synthesized porous inorganic membranes was investigated for alcohol and water mixtures. A-type zeolite membrane crystallized as a thin film showed the selective \'Jermeability of water from the mixtures through the molecular sieving activity of micropores.

  • PDF

Design on ultra low power consumption microhotplates based on 3C-SiC for high temperatures (고온용 저전력소비형 3C-SiC 마이크로 히터의 설계)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.385-386
    • /
    • 2008
  • This paper reports the design of the ultra low power consumption microhotplates for high temperatures. The microhotplates consisting of a platinum-based heating element on AlN/poly 3C-SiC layers were designed. The microhotplate is a $600\times600{\mu}m^2$ square shaped membrane made of $1{\mu}m$ thick ploy 3C-SiC suspended by four legs. The microhotplate was compared with $Si_3N_4/SiO_2/Si_3N_4$(NON) structure microhotplate by COMSOL simulation system. Thermal uniformity, power consumption and thermal characterizations of microhotplates based on 3C-SiC thin film are better than microhotplates with NON structure.

  • PDF

The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures

  • Chung, Gwiy-Sang;Hong, Seok-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • This paper presents optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SOI and trench structures. The micro-heaters are based on a thermal measurement principle and contains thermal isolation regions of 10 ${\mu}m$-thick Si membranes consisting of oxide-filled trenches in the SOI membrane rim. The micro-heaters were fabricated with Pt-RTD on the same substrate via MgO buff layer between Pt thin-film and $SiO_2$ layer. The thermal characteristics of micro-heater with trench-free SOI membrane structure was $280^{\circ}C$ at input power 0.9 W; in the presence of 10 trenches, it was $580^{\circ}C$ due to reduction of the external thermal loss. Therefore, a micro-heater with trenches in SOI membrane rim structure provides a powerful and versatile alternative technology for enhancing the performance of micro-thermal sensors and actuators.

  • PDF

Fabrication and Characterization of Suspended-type Thin Film Resonator Using SOI-Micromachining Process (SOI 마이크로머시닝 공정을 이용한 Suspended-type 박막공진기의 제작 및 특성평가)

  • Ju, Byeong-Kwon;Kim, Hyun-Ho;Lee, Si-Hyung;Lee, Jeon-Kook;Kim, Soo-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.303-306
    • /
    • 2001
  • STFR were fabricated on the floating membrane which was formed by SOI-micromachining process. The floating membranes having a thickness range of $3{\sim}15{\mu}m$ could be simply formed by micromachining the directly-bonded and thinned SOI substrate. The STFR device fabricated on the $15{\mu}m$-thick membrane showed resonance frequency of fr = 1.65 GHz, coupling coefficient of Keff2 = 2.4 %, and series and parallel quality factors of Qs = 91.7 and Qp = 87.7, respectively.

  • PDF

Stress and Relective Index of ${SiN}_{x}$ and ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$ Films as Membranes of Micro Gas Sensor (Micro Gas Sensor의 Membrane용 ${SiN}_{x}$막과 ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$막의 응력과 굴절율)

  • Lee, Jae-Seok;Sin, Seong-Mo;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.102-106
    • /
    • 1997
  • Micro gas sensors including thin film catal) tic type require stress-free memhrancs for etch stop of Si anisotropic etching and sublayer of sensing elements hecause stress is one of the main factors affecting breakdown of thin membranes. This paper reports the effects of deposition conditions on stress and refractive index of $SiN_{x}/SiO_{x}/(NON)$ films deposited by low pressure c11ernic;rl vapor deposition(L, t'CVI)) 2nd reactve sputtering. In the case of I.PCVI1, the stresses of $SiN_{x}$ and NON films arc $7.6{\times}10^{8}dyne/cm^2$ and $3.3{\times}10^{8}dyne/cm^2$, respectibely, and the refractive indices are 3.05 and 152, respectively. In the cxse oi the sputtered SiN, , compressi\e stress decreased in magnitude and then turned to tensility as increasing proc, ess pressure by lmtorr to 30mtorr and cicreasmg applied power density by $2.74W/cm^2$ to $1.10W/cm^2$. The hest value of film stress obt;~ined under condition of lOmtorr and $1.37W/cm^2$ in this' experiment was $1.2{\times}10^{9}dyne/cm^2$ cnnipressive. The refr~ict~ve index decreased from 2 05 to 1 89 as decreasing applied power density by lnitorr to 3Orntorr and increasing process pressure hy $2.74W/cm^2$ to $1.10W/cm^2$. Stresses of films deposited by both LPCVL) and sputtering decreased as incre;lsing temperature and showed plastic behavior as decreasing temperature.

  • PDF

Focused Ion Beam Milling for Nanostencil Lithography (나노스텐실 제작을 위한 집속이온빔 밀링 특성)

  • Kim, Gyu-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.245-250
    • /
    • 2011
  • A high-resolution shadow mask, a nanostencil, is widely used for high resolution lithography. This high-resolution shadowmask is often fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. In this study, FIB milling on 500-nm-thin SiN membrane was tested and characterized. 500 nm thick and $2{\times}2$ mm large membranes were made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 60 nm could be made into the membrane. The nanostencil could be used for nanoscale patterning by local deposition through the apertures.