• 제목/요약/키워드: Si thin-film solar cell

검색결과 188건 처리시간 0.029초

High Work Function of AZO Fhin Films as Insertion Layer between TCO and p-layer and Its Application of Solar Cells

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.426.1-426.1
    • /
    • 2016
  • We report high work function Aluminum doped zinc oxide (AZO) films as insertion layer as a function of O2 flow rate between transparent conducting oxides (TCO) and hydrogenated amorphous silicon oxide (a-SiOx:H) layer to improve open circuit voltage (Voc) and fill factor (FF) for high efficiency thin film solar cell. However, amorphous silicon (a-Si:H) solar cells exhibit poor fill factors due to a Schottky barrier like impedance at the interface between a-SiOx:H windows and TCO. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiOx:H. In this study, we report on the silicon thin film solar cell by using as insertion layer of O2 reactive AZO films between TCO and p-type a-SiOx:H. Significant efficiency enhancement was demonstrated by using high work-function layers (4.95 eV at O2=2 sccm) for engineering the work function at the key interfaces to raise FF as well as Voc. Therefore, we can be obtained the conversion efficiency of 7 % at 13mA/cm2 of the current density (Jsc) and 63.35 % of FF.

  • PDF

박막 광전에너지 변환소자의 개발에 관한 연구 (A Study of Fabrication Techniques of Thin film Photo-Electric Energy Conversion Elements)

  • 성영권;민남기;성만영;김승배
    • 전기의세계
    • /
    • 제25권5호
    • /
    • pp.63-69
    • /
    • 1976
  • Among various types of photo-electric energy conversion element which can transfer solar energy into electric energy through the photo voltaic effect, Si solar cells were investigated on photoelectric characteristics, improvements of its efficiency and economical evaluation for its production cost. To study the above subjects, we decided best conditions on fabricating of thin film Si solar cell by epitaxial growth and knew that the thin solar cell by epitaxial growth was more efficient than that by diffusion process. And also higher photo voltaic output was obtained as a effect of SiO as antireflection coating by several methods, i.e. vacuum evaporating techniques of electrode to decrease the contact resistance and to form best ohmic contact, and concentration techniques of sun's ray by lenz or both-sided illumination through special structure for reflection using mirrors.

  • PDF

STS430 기판을 이용한 Flexible CIGS 박막 태양전지 제조 (Fabrication of Flexible CIGS thin film solar cells using STS430 substrate)

  • 정승철;안세진;윤재호;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.436-437
    • /
    • 2008
  • Flexible CIGS thin film solar cell was fabricated using STS430 plate as a flexible substrate in this work. A diffusion barrier layer of $SiO_2$ thin film was deposited on STS430 substrate by PECVD followed by deposition of double layered Mo back contact. After depositing CIGS absorber layer by co-evaporation, CdS buffer layer by chemical bath deposition, ZnO window layer by RF sputtering and Al electrode by thermal evaporation, the solar cell fabrication processes were completed and its performance was evaluated. Corresponding solar cell showed an conversion efficiency of 8.35 % with $V_{OC}$ of 0.52 V, $J_{SC}$ of 26.06 mA/$cm^2$ and FF of 0.61.

  • PDF

PECVD 공정을 이용한 후면 패시베이션 및 결정질 실리콘 태양전지 적용에 관한 연구 (A Study on the Application of Thin Film Passivation and Crystalline Silicon Solar Cells Using PECVD Process)

  • 김관도
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.68-71
    • /
    • 2020
  • In this study, SiNx and Al2O3 thin film was manufactured using PECVD deposition process and applied to crystalline silicon solar cells, resulting in 16.7% conversion efficiency. The structural improvement experiment of the rear electrode resulted in a 1.7% improvement in conversion efficiency compared to the reference cell by reducing the recombination rate of minority carriers and increasing the carrier lifetime by forming a passivation layer consisting of SiNx and Al2O3 thin films through the PECVD process.

산화물 반도체 ITO_{(n)}/Si_{(p)}$ 태양전지의 전기적 특성에 미치는 열처리 효과 (Annealing Effect on the Electrical Characteristics for Oxide Semiconductor ITO_{(n)}/Si_{(p)}$ Solar Cell)

  • 김용운
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.64-68
    • /
    • 2003
  • ITO_{(n)}/Si_{(p)}$ solar cell is fabricated by vaccum deposition method under the resistance heating with substrate temperature kept about 200[$^{\circ}C$] and than their properties are investigated. The maximum output of fabricated solar cell is obtained when the composition of the thin film is consisted of indium oxide 91[mole %] and tin oxide 9(mole %). The solar cell electrical charateristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min].

실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화 (Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells)

  • 탁성주;손창식;김동환
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

실리콘 태양전지 응용을 위한 황 결핍 n형 MoS2 층 연구 (Sulfur Defect-induced n-type MoS2 Thin Films for Silicon Solar Cell Applications)

  • 이인승;김근주
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.46-51
    • /
    • 2023
  • We investigated the MoS2 thin film layer by thermolytic deposition and applied it to the silicon solar cells. MoS2 thin films were made by two methods of dipping and spin coating of (NH4)2MoS4 precursor solution. We implemented two types of substrates of microtextured and nano-microtextured 6-in. Si pn junction wafers. The fabricated MoS2 thin film layer was analyzed, and solar cells were fabricated by applying the standard silicon solar cell process. The MoS2 thin film layer of sulfur-deficient form was deposited on the n-type emitter layer, and electrons, which are minority carriers, were well transported at the interface and exhibited photovoltaic solar cell characteristics. The cell efficiencies were achieved at 5% for microtextured wafers and 2.56% for nano-microtextured wafers.

  • PDF

박막태양전지의 광포획 기술 현황 (Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells)

  • 박형식;신명훈;안시현;김선보;봉성재;;;이준신
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향 (Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System)

  • 강정욱;손찬희;조광섭;유진혁;김정식;박창균;차성덕;권기청
    • 한국진공학회지
    • /
    • 제21권1호
    • /
    • pp.62-68
    • /
    • 2012
  • 건재 일체형 태양광발전(BIPV) 응용을 위해 광 입사각에 따른 태양전지의 변환 효율은 중요하다. 양자효율은 태양전지의 파장별 전자 수집효율을 말하며, 입사각별 양자효율 측정으로 입사각에 따른 태양전지 출력 변화 요인을 분석할 수 있다. 이러한 입사각별 양자효율은 태양전지 종류에 따라 차이를 보인다. 본 연구에서는 가장 많이 쓰이는 벌크형 단결정 실리콘 태양전지와 박막형 비정질 실리콘 태양전지의 입사각별 양자효율을 비교하였다. 그 결과, 단결정 실리콘 태양전지에서는 광 입사각이 증가함에 따라 전 파장영역에서 양자효율이 감소했다. 반면, 비정질 박막 실리콘 태양전지에서는 단파장 영역에서는 결정질 실리콘과 동일하게 감소하였으나, 그 이후의 흡수 영역에서 약 $40^{\circ}$의 입사각까지 증가 또는 일정한 양자효율을 보이다가 이후에 급격히 감소하는 결과를 얻었다. 이는 비정질 박막 실리콘 태양전지에서 입사각이 증가함에 따라 특정 파장 영역에서 산란과 박막 구조의 영향으로 예상된다. 따라서, 태양전지의 구조 및 광학 구조 최적화 등으로 BIPV 적용에 유리한 구조 태양전지 제작이 가능할 것으로 보인다.