• Title/Summary/Keyword: Si membrane

Search Result 396, Processing Time 0.025 seconds

Uncooled Pyroelectric Thin-film $(Ba,Sr)TiO_3$ Infrared Detector Thermally Isolated by Dielectric Membrane (유전체 멤브레인에 의해 열차단된 비냉각 초전형 박막 $(Ba,Sr)TiO_3$적외선 검지기)

  • Go, Seong-Yong;Jang, Cheol-Yeong;Kim, Dong-Jeon;Kim, Jin-Seop;Lee, Jae-Sin;Lee, Jeong-Hui;Han, Seok-Yong;Lee, Yong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • Uncooled pyroelectric thin-film (Ba,Sr)TiO$_3$ infrared detectors thermally isolated from Si-substrate by Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-membrane have been fabricated, and figures of merit for detectors were examined. The detector at $25^{\circ}C$ in air showed relatively high voltage responsivity of about 168.8 V/W and low specific detectivity of about 2.6$\times$10$^4$cm.Hz$^{1}$2//W at 1 Hz-chopping frequency because of very small signal-to-noise voltage ratio. It could be found that both thermal noise voltage and thermal time constant of the detector were very large by analyzing dependences of output waveforms on chopping frequency and temperature.

  • PDF

Preparation and Characteristic Studies of Sulfonated Poly (vinyl alcohol) Composite Membranes Containing Aluminum Silicate for PEMFC (고분자 전해질형 연료전지를 위한 알루미늄 실리케이트를 함유한 설폰화 폴리(비닐알코올) 복합막의 제조 및 특성연구)

  • Hwang, In-Seon;Nahm, Kee-Suk;Yoo, Dong-Jin
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes were prepared through the reaction polyvinyl alcohol (PVA) with glutaraldehyde (GLA) as a cross-linking agent and subsequently adding aluminum silicate ($Al_2O_3{\cdot}3SiO_2$) as an inorganic material. The water uptake decreased as the GDL contents increased due to cross-linking process of PVA with GDL, and the ion conductivity increased as the $Al_2O_3{\cdot}3SiO_2$ contents increased in PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes. The cross-linking structure of the polymers was confirmed using IR and the tendency of water uptake. The thermal analysis of the copolymers was carried out by TGA. TGA results showed that PVA/GLA composite membrane were more heat-resistant than PVA due to the cross-linking of PVA, and the heat stability of the composite membranes improved much more as the concentration of $Al_2O_3{\cdot}3SiO_2$ increased. Membranes prepared in this study seem to be have thermal stability and increase a tendency of the cation conductivity up to $60^{\circ}C$, but to be exhibit lower performance tendency at over $90^{\circ}C$. Therefore, it is necessary to do more aggressive effort to explore the possibility of application as an ion-conductive composite electrolyte.

Stress and Relective Index of ${SiN}_{x}$ and ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$ Films as Membranes of Micro Gas Sensor (Micro Gas Sensor의 Membrane용 ${SiN}_{x}$막과 ${SiN}_{x}/\textrm{SiO}_{x}/{SiN}_{x}$막의 응력과 굴절율)

  • Lee, Jae-Seok;Sin, Seong-Mo;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.102-106
    • /
    • 1997
  • Micro gas sensors including thin film catal) tic type require stress-free memhrancs for etch stop of Si anisotropic etching and sublayer of sensing elements hecause stress is one of the main factors affecting breakdown of thin membranes. This paper reports the effects of deposition conditions on stress and refractive index of $SiN_{x}/SiO_{x}/(NON)$ films deposited by low pressure c11ernic;rl vapor deposition(L, t'CVI)) 2nd reactve sputtering. In the case of I.PCVI1, the stresses of $SiN_{x}$ and NON films arc $7.6{\times}10^{8}dyne/cm^2$ and $3.3{\times}10^{8}dyne/cm^2$, respectibely, and the refractive indices are 3.05 and 152, respectively. In the cxse oi the sputtered SiN, , compressi\e stress decreased in magnitude and then turned to tensility as increasing proc, ess pressure by lmtorr to 30mtorr and cicreasmg applied power density by $2.74W/cm^2$ to $1.10W/cm^2$. The hest value of film stress obt;~ined under condition of lOmtorr and $1.37W/cm^2$ in this' experiment was $1.2{\times}10^{9}dyne/cm^2$ cnnipressive. The refr~ict~ve index decreased from 2 05 to 1 89 as decreasing applied power density by lnitorr to 3Orntorr and increasing process pressure hy $2.74W/cm^2$ to $1.10W/cm^2$. Stresses of films deposited by both LPCVL) and sputtering decreased as incre;lsing temperature and showed plastic behavior as decreasing temperature.

  • PDF

Development of a Parametric Design System for Membrane Structures (연성 막구조의 파라메트릭 설계 시스템 개발)

  • Choi, Hyun-chul;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.29-36
    • /
    • 2016
  • The objective of this research is to development of a parametric design system for membrane structures. The parametric design platform for the spatial structures has been designed and implemented. Rhino3D is used as a 3D graphic kernel and Grasshopper is introduced as a parametric modeling engine. Modeling components such as structural members, loading conditions, and support conditions are developed for structural modeling of the spatial structures. The interface module with commercial structural analysis programs is implemented. An iterative generation algorithm for design alternatives is a part of the design platform. This paper also proposes a design approach for the parametric design of Spoke Wheel membrane structures. A parametric modeling component is designed and implemented. SOFiSTik is examined to interact with the design platform as the structural analysis module. The application of the developed interface is to design optimally Spoke Wheel Shaped Ductile Membrane Structure using parametric design. It is possible to obtain objective shape by controlling the parameter using a parametric modeling designed for shape finding of spoke wheel shaped ductile membrane structure. Recently, looking at the present Construction Trends, It has increased the demand of the large spatial structure. But, It requires a lot of time for Modeling design and the Structural analysis. Finally an optimization process for membrane structures is proposed.

A Study on the Semiconductor Wastewater Treatment and Recycling by VSEP system (진동막분리장치에 의한 반도체폐수처리와 재이용에 관한 연구)

  • Kang Gyung-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.335-343
    • /
    • 2005
  • The objective of this research is to evaluate a feasibility of wastewater reuse by membrane treatment with vibrating membrane separation equipment. Molecular weight of compounds in wastewater, permeability of membrane and retentate characterization after membrane filtration were investigated in order to determine appropriate membrane pore size and materials for wastewater treatment. Selected membrane was evaluated with vibration membrane separation equipment to optimize operating conditions. The following conclusion are drawn. 1. We got as following test results after the distribution of particles in the semiconductor wastewater, are made up of $1\~20{\mu}m$. Si, gold and Al in turn are contained in semiconductor wastewater. 2. Recovery rate is changeless under increasing recovery rate in operation. Though a value can be if pressure can be changed, the highest value of permeate rate is presented in 150 psi. 3. The AS-100(polysulpone) was selected as the most appropriate membranes for the treatment of semi-conductor wastewater to VSEP system. The fouling almost did not occur during this experiments. The analyses of treated water with VSEP system showed conductivity: 0.059,us/cm, TDS: 40mg/l, COD: 20mg/l, SS : 5mg/l, n-Hexane: 8.3mg/l. Comparing previous systems, operating expenses is decreased by more $50\%$.

Behavior and Influence of EPS on Membrane Fouling by Changing of HRT in MBR with Gravitational Filtration (중력여과 방식의 MBR을 이용한 하수처리에서 HRT 변화에 따른 EPS의 거동과 막오염에 대한 영향)

  • Kim, SI-Won;Kwak, Sung-Jin;Lee, Eui-Sin;Hong, Seung-Mo;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The behavior and influence of EPS on membrane fouling by changing of hydraulic retention time was investigated, using lab. scale submerged membrane bio-reactor, which was operated with gravitational filtration and fed supernatant of primary sedimentation in waste water treatment plant as influent. The membrane was adopted micro-filter of polyethylene hollow fiber. EPS was analysed as polysaccharides and protein especially, into soluble and bound EPS separately. The concentration of soluble EPS was increased at short HRT, then membrane fouling was rapidly progressed and flux was depressed. The most of EPS clogged membrane pore were polysaccharides, while protein was important parameter affected on membrane fouling because of it's more accumulating in the more term operating.

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

The formation of highly ordered nano pores in Anodic Aluminum Oxide

  • Im, Wan-soon;Cho, Kyung-Chul;Cho, You-suk;Park, Gyu-Seok;Kim, Dojin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.53-53
    • /
    • 2003
  • There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.

  • PDF

Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Applications (고분자 전해질형 연료전지를 위한 TEOS가 함유된 술폰화 폴리아릴렌에테르술폰 복합막의 제조 및 특성)

  • Lee, Keun-Kyu;Kim, Tae-Ho;Hwang, Taek-Sung;Hong, Young-Taik
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.278-289
    • /
    • 2010
  • A series of composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) were prepared via addition of tetraethyl orthosilicate (TEOS) and solution casting method. The morphological structure, water uptake, proton conductivity of the resulting composite membranes were extensively investigated as function of the content of TEOS. By the sol-gel reaction, TEOS molecules were not completely converted to $SiO_2$ particles, but formed only oligomer-type. Also, EDS confirms that the resulting silicon dioxide was homogeneously distributed in the composite membranes. As the content of TEOS increased, the prepared membranes increased water uptake and proton conductivity at high temperature and low relative humidity condition. In particular, considerably high proton conductivity (0.015 S/cm) at $120^{\circ}C$ and 48%RH was demonstrated in the composite membrane containing 200% TEOS, which is 10 times greater than that of unmodified SPAES membrane. Also, the composite membranes were found to have enhanced thermal stability compared to the unmodified membrane.

Role of Caveolin-1 in Indomethacin-induced Death of Human Hepato-adenocarcinoma SK-Hep1 Cells

  • Kim, Kyung-Nam;Kang, Ju-Hee;Yim, Sung-Vin;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.143-148
    • /
    • 2008
  • Caveolin-1 (CAV1) is an integral membrane protein that may function as a scaffold for plasma membrane proteins and acts as a tumor suppressor protein. One causative factor of chemotherapy-resistant cancers is P-plycoprotein (P-gp), the product of the multidrug resistance-1 gene (MDR1), which is localized in the caveolar structure. Currently, the interactive roles of CAV1 and MDR1 expression in the death of cancer cells remain controversial. In this study, we investigated the effects of indomethacin on the cell viability and the expression levels of MDR1 mRNA and protein in a CAV1-siRNA-mediated gene knockdown hepatoma cell line (SK-Hep1). Cell viability was significantly decreased in CAV1-siRNA-transfected cells compared with that of control-siRNA-transfected cells. Furthermore, the viability of cells pretreated with CAV1 siRNA was markedly decreased by treatment with indomethacin (400${\mu}$M for 24 h). However, the protein and mRNA levels of MDR1 were unchanged in CAV1-siRNA-transfected cells. These results suggest that CAV1 plays an important role as a major survival enzyme in cancer cells, and indomethacin can sensitively induce cell death under conditions of reduced CAV1 expression, independent of MDR1 expression.