DOI QR코드

DOI QR Code

Preparation and Characteristic Studies of Sulfonated Poly (vinyl alcohol) Composite Membranes Containing Aluminum Silicate for PEMFC

고분자 전해질형 연료전지를 위한 알루미늄 실리케이트를 함유한 설폰화 폴리(비닐알코올) 복합막의 제조 및 특성연구

  • Hwang, In-Seon (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Nahm, Kee-Suk (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Yoo, Dong-Jin (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University)
  • 황인선 (전북대학교 수소.연료전지공학과, 특성화대학원) ;
  • 남기석 (전북대학교 수소.연료전지공학과, 특성화대학원) ;
  • 유동진 (전북대학교 수소.연료전지공학과, 특성화대학원)
  • Received : 2011.07.06
  • Accepted : 2011.08.10
  • Published : 2011.09.30

Abstract

PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes were prepared through the reaction polyvinyl alcohol (PVA) with glutaraldehyde (GLA) as a cross-linking agent and subsequently adding aluminum silicate ($Al_2O_3{\cdot}3SiO_2$) as an inorganic material. The water uptake decreased as the GDL contents increased due to cross-linking process of PVA with GDL, and the ion conductivity increased as the $Al_2O_3{\cdot}3SiO_2$ contents increased in PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ composite membranes. The cross-linking structure of the polymers was confirmed using IR and the tendency of water uptake. The thermal analysis of the copolymers was carried out by TGA. TGA results showed that PVA/GLA composite membrane were more heat-resistant than PVA due to the cross-linking of PVA, and the heat stability of the composite membranes improved much more as the concentration of $Al_2O_3{\cdot}3SiO_2$ increased. Membranes prepared in this study seem to be have thermal stability and increase a tendency of the cation conductivity up to $60^{\circ}C$, but to be exhibit lower performance tendency at over $90^{\circ}C$. Therefore, it is necessary to do more aggressive effort to explore the possibility of application as an ion-conductive composite electrolyte.

본 연구에서는 폴리비닐알코올(PVA)을 전해질 막으로 이용하기 위하여 가교제로서 글루타르알데히드(GLA)와 무기물 첨가제로 알루미늄실리케이트($Al_2O_3{\cdot}3SiO_2$)를 사용하여 PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ 복합막을 제조하였다. PVA/GLA/$Al_2O_3{\cdot}3SiO_2$ 복합막은 GLA의 비율이 증가함에 따라 함수율이 감소되었고, 알루미늄실리케이트 함량이 증가함에 따라 함수율 향상이 예상되어 수소이온 전도도가 향상되는 경향을 보였다. 제조된 고분자의 가교결합은 IR과 함수율의 경향성으로 확인되었다. 제조된 고분자의 열분석은 TGA에 의해 수행되었다. TGA의 분석결과 PVA/GLA 복합막은 가교결합으로 인하여 PVA보다 열안정성이 우수하였으며, 복합막의 알루미늄실리케이트의 비율이 증가할수록 열안정성이 더욱 증대되는 것을 알 수 있었다. 본 연구에서 제조된 복합막은 열안전성을 갖으며 $60^{\circ}C$까지는 양이온전도도가 증가하는 경향을 갖지만 $90^{\circ}C$로 온도가 높아짐에 따라 성능이 낮아지는 경향을 보였다. 따라서 보다 적극적인 노력을 통하여 향후 이온전도성 복합 전해질막으로 적용 가능성을 타진해야 할 것으로 기대된다.

Keywords

References

  1. Bae J. M.; Honma, I.; Murata M.; Yamaoto T.; Rikukawa M.; Ogata N. "Properties of selected sulfonated polymers as proton-conduction electrolytes for polymer elcctrolyte fuel cell", Solid State Ionics, 147, 189-194 (2002). https://doi.org/10.1016/S0167-2738(02)00011-5
  2. Escudero M. J.; Hontanon E.; Schwartz S.; Boutonnet M; Daza L. "Development performance characterization of new electro catalysts for PEMFC", J. Power Sources, 106, 206- 214 (2002). https://doi.org/10.1016/S0378-7753(01)01040-0
  3. Kreuer K. D., "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", Membrane Journal, 185, 29-39 (2001). https://doi.org/10.1016/S0376-7388(00)00632-3
  4. Ramani V.; Kunz H. R; Fenton J. M, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membrane Science, 232, 31-44 (2004). https://doi.org/10.1016/j.memsci.2003.11.016
  5. Vielstich W.; Lamm A.; Gasteiger H. A, "Handbook of Fuel Cells", Wiley, 2003.
  6. Li Q.; He R.; Jensen Q. O.; Bjerrum N. J., "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100{^{\circ}C}$", Chem. Mater, 15, 4896- 4915 (2003). https://doi.org/10.1021/cm0310519
  7. Mauritz K. A; Moore R. B, "State of Understanding of Nafion", Chem. Rev, 104, 4535-4586 (2004). https://doi.org/10.1021/cr0207123
  8. Ezzell B. R.; Carl W. P.; Mod W. A., US Patent 4,358,412, 1982.
  9. Connollym D. J.; Gresham W. F., US Patent 3,282,875, 1966.
  10. Heitner-Wirguin C., "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membrane Science, 120, 1-33 (1996). https://doi.org/10.1016/0376-7388(96)00155-X
  11. Mochizuki S.; Zydney A. L., "Theoretical analysis of pore size distribution effects on membrane transport", J. Membrane Science, 82(3), 211-228 (1993). https://doi.org/10.1016/0376-7388(93)85186-Z
  12. Schonberger F.; Hein M.; Kerres J., "Preparation and characterization of sulfonated partially fluorinated statistical poly (arylene ether sulfone)s and their blends with PBI", Solid State Ionics, 178, 547-554 (2007). https://doi.org/10.1016/j.ssi.2007.01.003
  13. Smitha B.; Sridhar S.; Khan A. A., "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membrane Science, 259, 10-26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  14. Panero S.; Fiorenza P.; Navarra M. A.; Romanowska J.; Scrosati B. "Silica-added, composite poly (vinyl alcohol) membranes for fuel cell application", J. Electrochem. Soc., A2400-2405 (2005).
  15. Yang T. "Composite membrane of sulfonated poly (etheretherketone) and sulfated poly (vinyl alcohol) for use in direct methanol fuel cells", J. Membrane Science, 221-226 (2009).
  16. Harrison W. L.; Wang F.; Mecham J. B.; Bhanu V. A.; Hill E.; Kim Y. S.; McGrath J. E., "Influence of the bisphenol structure on the direct synthesis of sulfonated poly (arylene ether) copolymers I", J. Power Sources: Part A: Polymer Chemistry, 41, 2264-2276 (2003). https://doi.org/10.1002/pola.10755
  17. Erno P., "Structure determination of organic compounds: Tables of spectral data", Pretsch E; Buhlmann P; Affolter C, 3rd completely revised and enlarged English edition, Springer, Berlin, 2000, 245-312.
  18. Kopitzke R. W.; Linkous C. A., "Conductivity and water uptake of aromatic-based proton exchange membrane electrolyte" J. Electrochem. Soc., 147(5), 1677-1681 (2000). https://doi.org/10.1149/1.1393417
  19. Kumar G. G.; Kim A. R.; Nahm K. S.; Yoo D. J.; Elizabeth R., "High ion and lower molecular transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications." J. Power Sources 195, 5922-5928 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.021
  20. Yoo D. J.; Hyun S. H.; Kim A. R.; Kumar G. G.; Nahm K. S., "Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics." Polym. Int., 60, 85-92 (2011). https://doi.org/10.1002/pi.2914