• 제목/요약/키워드: Si addition

검색결과 2,800건 처리시간 0.031초

Fe-Cr-Ni-Si-C계 경면처리 합금의 Cavitaon Erosion 저항성에 미치는 Vanadium 첨가의 영향 (Effect of Vanadium Addition on the Cavitation Erosion Resistance of Fe-Cr-Ni-Si-C Hardfacing Alloy)

  • 김경오;김준기;장세기;김선진;강성군
    • 한국표면공학회지
    • /
    • 제31권5호
    • /
    • pp.297-303
    • /
    • 1998
  • The influences of vanadium addition on the cavitation erosion resistance pf Fe-Cr-Ni-Si-C hardfacing alloy were investigated using a vibratory apparatus up to 30 hrs. It was shown that 1wt.%V additioned alloy improved the resistance to cavitation damage. However, further increase in V content up to 2wt.% reduced the cavitation erosion resistance. It was considered that the addition of V developed the cavitation erosion resistance by reducing the stacking fault energy of Fe-Cr-Ni-Si-C alloy. However, the further increase in V content seemed to reduce the cavitation erosion resistance by increasing the matrix/carbide interfacial area, which was the preferential sites of the cavitation damage.

  • PDF

Metal induced crystallization of amorphous silicon using metal solution

  • Yoon, Soo-Young;Oh, Jae-Young;Kim, Chae-Ok;Jang, Jin
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.123-133
    • /
    • 1998
  • Amorphous silicon (a-Si) was crystallized by metal induced crystallization using metal solution. The a-Si films spin coated with a 50,000 ppm Ni solution were crystallized at as low as $500^{\circ}C$. Needlelike morphology, developed as a result of the migration of $NiSi_2$, precipitates, appears in the MIC poly-Si. The growth of the needlelike crystallites proceeds to a direction parallel to (111). The crystallization temperature can be lowered to $450^{\circ}C$ by Au addition. The enhancement of crystallization results from the decrease of interfacial energy at the NiSi2/Si interface by Au addition.

  • PDF

Electrical Transport and Joule Heating of ZrB2 Network in SiC Matrix

  • Kim, Jung-Hun;Kim, Chang-Yeoul;Choi, Sung-Churl
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.440-445
    • /
    • 2018
  • To control the electrical properties of a SiC heating element, we sintered $SiC-ZrB_2$composites by using the spark plasma sintering method. The addition of $ZrB_2$ particles with lower electrical conductivity to the SiC matrices with comparatively higher electrical resistivity lowers the electrical resistivities of the composite material. The $ZrB_2$ particles aggregate to form large particles and 3-1, 3-2, and 3-3 networks, i.e., conduction paths. In our study, about $1-{\mu}m$-sized $ZrB_2$ powders start to form the conduction path at about 10 vol.% of addition, namely the threshold volume. The Joule heating experiment shows that 20 vol.% $ZrB_2$-added SiC heating element has outstanding heating efficiency.

Al-7wt%Si-0.3wt%Mg 합금의 응고시 미세조직에 미치는 Ca 및 P의 영향에 관한 연구 (A Study on the Effect of Ca and P on the Microstructure in Solidification of Al-7wt%Si-0.3wt%Mg Alloy)

  • 권일수;김정호;김경민;윤의박
    • 한국주조공학회지
    • /
    • 제18권4호
    • /
    • pp.349-356
    • /
    • 1998
  • In this study, the influence of impurity element Ca, P on solidification behavior and morphology of eutectic silicon was examined by observation of microstructure and by DSC analysis. In the case of 1.3 ppm P, eutectic Si was fine and fibrous when the added amount of Ca was 500 ppm, However, the modification of eutectic Si was depressed by formation of polygonal Ca-Si compounds when the addition amount of Ca was greater than 1000 ppm. The addition of Ca 500 ppm depressed the primary and eutectic temperature. The primary and eutectic temperature were depressed with Ca 500 ppm but rather ascended when the addition amount of Ca was more than 1000 ppm. When the content of P was 17.5 ppm, eutectic Si had modified morphology with Ca addition. DAS was increased, the primary temperature was ascended and eutectic temperature was depressed with Ca added. Eutectic Si appeared as coarse flake phase and DAS was decreased with the increase of P content. The existence of P in the melt depressed the primary temperature and ascended eutectic temperature.

  • PDF

구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 II-Si, Mo (Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron II - Silicon and Molybdenum)

  • 방웅호;강춘식;박재현;권영각
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.240-246
    • /
    • 2000
  • Surface layer properties such as composition, phase, hardness, and oxide layer condition are very important if the main failure mechanism of metals is wear. Generally, stable and dense oxide layers are known to decrease the wear rate of metals by prohibition of metallic junction occurred between bare metals. Addition of Si above 4 wt% to DCI(Ductile Cast Iron) is reported to enhance the significant oxidation resistance by forming the silicon-rich surface layer which inhibits further oxidation. And addition of up to 2 wt% Mo to high Si ductile iron produces significant increases in high temperature tensile strength, creep strength, thermal fatigue resistance and oxidation resistance. High pressure wear characteristics of unalloyed DCI(Ductile cast Iron), 4.46 wt% Si ductile iron, 4.3 wt% Si-0.52 wt% Mo ductile iron were investigated through unlubricated pin-on-disc wear test. Wear test was carried out at speed of 23m/min, under pressure of 3 MPa and 3.3 MPa. Wear surfaces of each specimen were observed by SEM to determine the wear mechanism under high pressure wear condition. Addition of Si 4.46 wt% severely deteriorated wear property of ductile iron compared to unalloyed DCI. But combined addition of Si 4.3 wt%andMo0.52wt%decreasedthefrictioncoefficient(${\mu}$)ofductileironsandremarkablydelayedthemild-severeweartransition.

  • PDF

AC4A 알루미늄 합금의 주조특성에 미치는 미량 첨가원소의 영향 (Effect of Minor Additives on Casting Properties of AC4A Aluminum Casting Alloys)

  • 오승환;김헌주
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.148-156
    • /
    • 2017
  • The effects of minor additives on the casting properties of AC4A aluminum alloys were investigated. Measurements of the cooling curve and microstructure observations were conducted to analyze the effects of Ti-B and Sr minor elements during the solidification process. A fine grain size and an increase in the crystallization temperature for the ${\alpha}-Al$ solution were evident after the addition of 0.1wt% Al-5%Ti-1%B additive. The modification effect of the eutectic $Mg_2Si$ phase with the addition of 0.05% Al-10%Sr additive was prominent. A fine eutectic $Mg_2Si$ phase and a decrease in the growth temperature of the eutectic $Mg_2Si$ phase were evident. Fluidity, shrinkage and solidification-cracking tests were conducted to evaluate the castability of the alloy. The combined addition of Al-5%Ti-1%B and Al-10%Sr additives showed the maximum filling length owing to the effect of the fine ${\alpha}-Al$ grains. The macro-shrinkage ratio increased, while the micro-shrinkage ratio decreased with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives. The macro-shrinkage ratio was nearly identical, while the micro-shrinkage ratio increased with the addition of the Al-10%Sr additive. The tendency of the occurrence of solidification cracking decreased owing to the effect of the fine ${\alpha}-Al$ grains and the modification of the $Mg_2Si$ phase with the combined addition of Al-5%Ti-1%B and Al-10%Sr additives.

Al-7Si-0.4Mg-1Fe 주조합금의 미세조직과 인장성질에 미치는 Mn, Cr 및 Sr 첨가의 영향 (Effects of Mn, Cr, and Sr Additions on the Microstructure and Tensile Properties of Al-7Si-0.4Mg-1Fe Casting Alloy)

  • 김정민;박준식;김하영;조재익;정창열
    • 한국주조공학회지
    • /
    • 제29권1호
    • /
    • pp.27-32
    • /
    • 2009
  • The microstructure of Al-7Si-0.4Mg-1Fe alloy mainly consists of aluminum dendrites, Al-Si eutectics, and $Al_5FeSi$ needles. When Mn was added to the alloy, the substantial amount of $Al_5FeSi$ phase was changed into Al(Mn,Fe)Si, however the needle-like morphology was almost unchanged. Combined additions of Cr or Sr with Mn to the base alloy resulted in rod-like Al(Mn, Fe,Si)Si phase. The tensile properties of as-cast alloys were enhanced by the Mn addition, especially when it was added with Sr. The tensile properties after T6 heat treatment was a little improved with 0.7%Mn addition, but Cr or Sr additions with Mn didn't show any positive effect on the properties of heat-treated alloys.

Al-Si계 합금의 분말 크기 및 조성에 따른 반사율 변화 특성 (Reflectance Characteristics of Al-Si based Alloys according to Powder Size and Composition)

  • 최광묵;채홍준
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.22-27
    • /
    • 2019
  • In this study, the effects of powder size and composition on the reflectance of Al-Si based alloys are presented. First, the reflectance of Al-Si bulk and powder are analyzed to confirm the effect of powder size. Results show that the bulk has a higher reflectance than that of powder because the bulk has lower surface defects. In addition, the larger the particle size, the higher is the reflectance because the interparticle space decreases. Second, the effect of composition on the reflectance by the changing composition of Al-Si-Mg is confirmed. Consequently, the reflectance of the alloy decreases with the addition of Si and Mg because dendrite Si and $Mg_2Si$ are formed, and these have lower reflectance than pure Al. Finally, the reflectance of the alloy is due to the scattering of free electrons, which is closely related to electrical conductivity. Measurements of the electrical conductivity based on the composition of the Al-Si-Mg alloy confirm the same tendency as the reflectance.

상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.