• 제목/요약/키워드: Si activation

검색결과 649건 처리시간 0.025초

Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2

  • Kang, June Hee;Kim, Hyun Ji;Park, Mi Kyung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.625-633
    • /
    • 2017
  • Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and $Ca^{2+}$ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.

Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

  • Rahman, Md. Ataur;Bishayee, Kausik;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2016
  • Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-$3{\beta}$ activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.

A Protein Tyrosine Phosphatase Inhibitor, Pervanadate, Inhibits Angiotensin II-Induced β-Arrestin Cleavage

  • Jang, Sei-Heon;Hwang, Si Ae;Kim, Mijin;Yun, Sung-Hae;Kim, Moon-Sook;Karnik, Sadashiva S.;Lee, ChangWoo
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2009
  • ${\beta}$-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin $AT_1$ receptorbound ${\beta}$-arrestin 1 is cleaved after $Phe^{388}$ upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced ${\beta}$-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of ${\beta}$-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of ${\beta}$-arrestin 1 induced conformational changes and the cleavage of ${\beta}$-arrestin 1 without angiotensin $AT_1$ receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged ${\beta}$-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of ${\beta}$-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced ${\beta}$-arrestin cleavage.

Transcriptome Analysis of Induced Systemic Drought Tolerance Elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana

  • Cho, Song-Mi;Kang, Beom Ryong;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.209-220
    • /
    • 2013
  • Root colonization by Pseudomonas chlororaphis O6 induces systemic drought tolerance in Arabidopsis thaliana. Microarray analysis was performed using the 22,800-gene Affymetrix GeneChips to identify differentially-expressed genes from plants colonized with or without P. chlororaphis O6 under drought stressed conditions or normal growth conditions. Root colonization in plants grown under regular irrigation condition increased transcript accumulation from genes associated with defense, response to reactive oxygen species, and auxin- and jasmonic acid-responsive genes, but decreased transcription factors associated with ethylene and abscisic acid signaling. The cluster of genes involved in plant disease resistance were up-regulated, but the set of drought signaling response genes were down-regulated in the P. chlororaphis O6-colonized under drought stress plants compared to those of the drought stressed plants without bacterial treatment. Transcripts of the jasmonic acid-marker genes, VSP1 and pdf-1.2, the salicylic acid regulated gene, PR-1, and the ethylene-response gene, HEL, also were up-regulated in plants colonized by P. chlororaphis O6, but differed in their responsiveness to drought stress. These data show how gene expression in plants lacking adequate water can be remarkably influenced by microbial colonization leading to plant protection, and the activation of the plant defense signal pathway induced by root colonization of P. chlororaphis O6 might be a key element for induced systemic tolerance by microbes.

천정기보단(天精氣保丹)의 자외선에 의한 세포 손상 억제 효과 (Protective Effect of Cheonjeongkibo-Dan UV-Induced Cellular Damage in Human Dermal Fibroblast)

  • 이강태;박시준;이정로;이광식;김대성;문연자;이건국;우원홍
    • 동의생리병리학회지
    • /
    • 제24권6호
    • /
    • pp.950-955
    • /
    • 2010
  • In this study, we prepared CheonJeongKiBo-Dan(7 oriental medicinal plants, 7OMP: Astragalus Membranaceus root, Panax Ginseng root, Glycyrrhiza Glabra (licorice) root, Schizandra Chinensis fruit, Polygonatum Odoratum, Rehmannia Glutinosa root, Paeonia Albiflora root) by extracting them in one reactor and studied its efficacies on skin. UV irradiation has been suggested as a major cause of photoaging in skin. In order to investigate protective effects against UV-B induced cellular damage, 7OMP was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, reactive oxygen species (ROS) generation, phosphorylation of ATR and p53 in human dermal fibroblast cell system after UV-B irradiation. 7OMP reduced UV-B-induced cellular damage in HDFs cells, and inhibited ROS generation. UV-B-induced toxicity accompanying ROS production and the resultant DNA damage are responsible for activation of ATR, p53 and Bad. In this study, 7OMP hampered phosphorylations of ATR and p53 in human dermal fibroblasts. Therefore, 7OMP may be protective against UV-induced skin photoaging.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.

PXR Mediated Protection against Liver Inflammation by Ginkgolide A in Tetrachloromethane Treated Mice

  • Ye, Nanhui;Wang, Hang;Hong, Jing;Zhang, Tao;Lin, Chaotong;Meng, Chun
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.40-48
    • /
    • 2016
  • The pregnane X receptor (PXR), a liver and intestine specific receptor,, has been reported to be related with the repression of inflammation as well as activation of cytochromosome P450 3A (CYP3A) expression. We examined the effect of PXR on tetrachloromethane (CCl4)-induced mouse liver inflammation in this work. Ginkgolide A, one main component of Ginkgo biloba extracts (GBE), activated PXR and enhanced PXR expression level, displayed both significant therapeutic effect and preventive effect against $CCl_4$-induced mouse hepatitis. siRNA-mediated decrease of PXR expression significantly reduced the efficacy of Ginkgolide A in treating $CCl_4$-induced inflammation in mice. Flavonoids, another important components of GBE, were shown anti-inflammatory effect in a different way from Ginkgolide A which might be independent on PXR because flavonoids significantly inhibited CYP3A11 activities in mice. The results indicated that anti-inflammatory effect of PXR might be mediated by enhancing transcription level of $I{\kappa}B{\alpha}$ through binding of $I{\kappa}B{\alpha}$. Inhibition of NF-${\kappa}B$ activity by NF-${\kappa}B$-specific suppressor $I{\kappa}B{\alpha}$ is one of the potential mechanisms of Ginkgolide A against CCl4-induced liver inflammation.

책이음서비스 활성화를 위한 발전방안 연구 (A Study on the Development Plan for the Activation of Library One Service)

  • 강필수;최시내;곽승진
    • 한국문헌정보학회지
    • /
    • 제54권3호
    • /
    • pp.141-163
    • /
    • 2020
  • 본 연구에서는 책이음서비스의 개선 및 발전 방향을 설정하기 위하여 책이음서비스 참여 지역센터 및 참여 도서관을 대상으로 한 현황조사와 이용자를 대상으로 한 만족도 조사를 실시하였다. 그 결과 이용자가 책이음서비스에 대한 긍정적 인식을 가지고 있음을 확인했으나, 이용자와 관리자 측면에서의 서비스 개선과 다양한 고려사항이 존재하였다. 특히 미들웨어 서버의 불안정 문제 해결과 규정 개정의 필요성, 이용자 서비스의 확대와 실무 지원의 필요성이 확인되었다. 이를 위하여 책이음서비스 기능 개선과 신규 서비스 제공, 규정 개정과 관련 지침 개정 등 정책 지원과 서비스 운영을 위한 구체적 방안을 제안하였다. 본 연구를 통하여 책이음서비스 중장기 발전의 로드맵 제시가 가능할 것으로 기대된다.

INITIAL ESTIMATION OF THE RADIONUCLIDES IN THE SOIL AROUND THE 100 MEV PROTON ACCELERATOR FACILITY OF PEFP

  • An, So-Hyun;Lee, Young-Ouk;Cho, Young-Sik;Lee, Cheol-Woo
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.747-752
    • /
    • 2007
  • The Proton Engineering Frontier Project (PEFP) has designed and developed a proton linear accelerator facility operating at 100 MeV - 20 mA. The radiological effects of such a nuclear facility on the environment are important in terms of radiation safety. This study estimated the production rates of radionuclides in the soil around the accelerator facility using MCNPX. The groundwater migration of the radioisotopes was also calculated using the Concentration Model. Several spallation reactions have occurred due to leaked neutrons, leading to the release of various radionuclides into the soil. The total activity of the induced radionuclides is approximately $2.98{\times}10^{-4}Bq/cm^3$ at the point of saturation. $^{45}Ca$ had the highest production rate with a specific activity of $1.78{\times}10^{-4}Bq/cm^3$ over the course of one year. $^3H$ and $^{22}Na$ are usually considered the most important radioisotopes at nuclear facilities. However, only a small amount of tritium was produced around this facility, as the energy of most neutrons is below the threshold of the predominant reactions for producing tritium: $^{16}O(n,\;X)^3H$ and $^{28}Si(n,X)^3H$ (approximately 20 MeV). The dose level of drinking water from $^{22}Na$ was $1.48{\times}10^{-5}$ pCi/ml/yr, which was less than the annual intake limit in the regulations.

Amyloid Precursor Protein Binding Protein-1 Is Up-regulated in Brains of Tg2576 Mice

  • Yang, Hyun-Jung;Joo, Yu-Young;Hong, Bo-Hyun;Ha, Sung-Ji;Woo, Ran-Sook;Lee, Sang-Hyung;Suh, Yoo-Hun;Kim, Hye-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권4호
    • /
    • pp.229-233
    • /
    • 2010
  • Amyloid precursor protein binding protein-1 (APP-BP1) binds to the carboxyl terminus of amyloid precursor protein and serves as a bipartite activation enzyme for the ubiquitin-like protein, NEDD8. Previously, it has been reported that APP-BP1 rescues the cell cycle S-M checkpoint defect in Ts41 hamster cells, that this rescue is dependent on the interaction of APP-BP1 with hUba3. The exogenous expression of APP-BP1 in neurons has been reported to cause DNA synthesis and apoptosis via a signaling pathway that is dependent on APP-BP1 binding to APP. These results suggest that APP-BP1 overexpression contributes to neurodegeneration. In the present study, we explored whether APP-BP1 expression was altered in the brains of Tg2576 mice, which is an animal model of Alzheimer's disease. APP-BP1 was found to be up-regulated in the hippocampus and cortex of 12 month-old Tg2576 mice compared to age-matched wild-type mice. In addition, APP-BP1 knockdown by siRNA treatment reduced cullin-1 neddylation in fetal neural stem cells, suggesting that APP-BP1 plays a role in cell cycle progression in the cells. Collectively, these results suggest that increased expression of APP-BP1, which has a role in cell cycle progression in neuronal cells, contributes to the pathogenesis of Alzheimer's disease.