• Title/Summary/Keyword: Si Etching

Search Result 874, Processing Time 0.031 seconds

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells (와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

Dependence of Dielectric Layer and Electrolyte on the Driving Performance of Electrowetting-Based Liquid Lens

  • Lee, June-Kyoo;Park, Kyung-Woo;Kim, Hak-Rin;Kong, Seong-Ho
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the effects of a dielectric layer and an electrolyte on the driving performance of an electrowetting on dielectric (EWOD)-based liquid lens. The range of tunable focal length of the EWOD-based liquid lens was highly dependent on the conditions of the dielectric layer, which included an inorganic oxide layer and an organic hydrophobic layer. Moreover, experiments on the physical and optical durability of electrolyte by varying temperature conditions, were conducted and their results were discussed. Finally, the lens with a truncated-pyramid silicon cavity having a sidewall dielectrics and electrode was fabricated by anisotropic etching and other micro-electromechanical systems (MEMS) technologies in order to demonstrate its performance. The lens with $0.6-{\mu}m$-thick $SiO_2$ layer and 10 wt% LiCl-electrolyte exhibited brilliant focal-length tunability from infinity to 3.19 mm.

Raman spectra of Diamond thin film grown from $CH_4-H_2-O_2$ system ($CH_4-H_2-O_2$계로부터 성장된 Diamond 박막의 Raman spectra)

  • Geun, H.K.;Park, S.T.;Cho, J.G.;Park, S.H.;Park, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1490-1492
    • /
    • 1994
  • Diamond thin films were deposited on Si substrate from $CH_4-H_2-O_2$ system by MWPECVD at the condition of power of 800W, pressure of 80torr, $H_2$ flow rate of $75{\sim}81sccm$, $O_2$ flow rate of $0{\sim}3.8sccm$, $CH_4$ flow rate of $4.8{\sim}9sccm$, substrate temp, of $950{\sim}1010^{\circ}C$ and deposition time of 5hr. The deposited films were characterized by SEM, XRD and Raman spectroscopy. The growth rates of thin films and particles was measured. Good quality were synthesized at 40% of oxygen concentration which 6% of fixed metane concentration, and at 50%. Its deposition rates were $2.4{\mu}m/h$ respectively. As oxygen concentration increased, it was known that the broad peak of $1350 cm^{-1}$ was shifted to $1332cm^{-1}$ due to etching of carbon component.

  • PDF

The etch characteristics of TiN thin films using in $CH_4$/Ar plasma ($CH_4$/Ar 플라즈마를 이용한 TiN 박막의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.247-248
    • /
    • 2008
  • The etching characteristics of Titanium Nitride (TiN) and etch selectivity of TiN to $SiO_2$ and $HfO_2$ in $CH_4$/Ar plasma were investigated. It was found that TiN etch rate shows a non-monotonic behavior with increasing both Ar fraction in $CH_4$ plasma, RF power, and gas pressure. The maximum TiN etch rate of nm/min was obtained for $CH_4$ (80%)/Ar(20%) gas mixture. The plasmas were characterized using optical emission spectroscopy (OES) analysis measurements. From these data, the suggestions on the TiN etch characteristics were made.

  • PDF

The etch characteristics of $ZrO_2$ thin films by using high density plasma (고밀도 플라즈마를 이용한 $ZrO_2$ 박막의 식각특성 연구)

  • Woo, Jong-Chang;Kim, Sang-Gi;Koo, Jin-Gun;Jang, Myoung-Soo;Kang, Jin-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.170-171
    • /
    • 2008
  • The etching characteristics of Zirconium Oxide ($ZrO_2$) and etch selectivity of $ZrO_2$ to Si in HBr/$SF_6$ plasma were investigated. It was found that $ZrO_2$ etch rate shows a non-monotonic behavior with increasing both HBr fraction in $SF_6$ plasma, Source power, Bias Power, gas pressure. The maximum $ZrO_2$ etch rate of 54.8 nm/min was obtained for HBr(25%)/$SF_6$(75%) gas mixture. From these data, the suggestions on the $ZrO_2$ etch characteristics were made.

  • PDF

A Study on Wet Etch Behavior of Zinc Oxide Semiconductor in Acid Solutions

  • Seo, Bo-Hyun;Lee, Sang-Hyuk;Jeon, Jea-Hong;Choe, Hee-Hwan;Lee, Kang-Woong;Lee, Yong-Uk;Seo, Jong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.926-929
    • /
    • 2007
  • A significant progress has been made in the characterization of zinc oxide (ZnO) semiconductor as a new semiconductor layer instead of amorphous Si semiconductor used in thin film transistor due to its high electron mobility at low deposition temperature which is quite suitable for flexible display and OLED devices. The wet pattering of ZnO is another important issue with regard to mass production of ZnO thin film transistor device. However, the wet behavior of ZnO thin film in aqueous wet etching solutions conventionally used un TFT industry has not been reported yet, in this work, wet corrosion behavior of RF magnetron sputtered ZnO thin film in various wet solutions such as phosphoric and nitric acid solutions was studied using by electrochemical analysis. The effects of deposition parameters such as RF power and oxygen partial pressure on corrosion rate are also examined.

  • PDF

4.1” Transparent QCIF AMOLED Display Driven by High Mobility Bottom Gate a-IGZO Thin-film Transistors

  • Jeong, J.K.;Kim, M.;Jeong, J.H.;Lee, H.J.;Ahn, T.K.;Shin, H.S.;Kang, K.Y.;Park, J.S.;Yang, H,;Chung, H.J.;Mo, Y.G.;Kim, H.D.;Seo, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.145-148
    • /
    • 2007
  • The authors report on the fabrication of thin film transistors (TFTs) that use amorphous indium-gallium-zinc oxide (a-IGZO) channel and have the channel length (L) and width (W) patterned by dry etching. To prevent the plasma damage of active channel, a 100-nm-thckness $SiO_{x}$ by PECVD was adopted as an etch-stopper structure. IGZO TFT (W/L=10/50${\mu}m$) fabricated on glass exhibited the high performance mobility of $35.8\;cm^2/Vs$, a subthreshold gate voltage swing of $0.59V/dec$, and $I_{on/off}$ of $4.9{\times}10^6$. In addition, 4.1” transparent QCIF active-matrix organic light-emitting diode display were successfully fabricated, which was driven by a-IGZO TFTs.

  • PDF

A Study on the Optical and Electrical Characteristics of Multi-Silicon Using Wet Texture (습식텍스쳐를 이용한 다결정 실리콘 광학적.전기적 특성 연구)

  • Han, Kyu-Min;Yoo, Jin-Su;Yoo, Kwon-Jong;Lee, Hi-Deok;Choi, Sung-Jin;Kwon, Jun-Young;Kim, Ki-Ho;YI, Jun-Sin
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.383-387
    • /
    • 2009
  • Multi-crystalline silicon surface etching without grain-boundary delineation is a challenging task for the fabrication of high efficiency solar cell. The use of sodium hydroxide - sodium hypochlorite (NaOH40% + NaOCl 12%) solution for texturing multi-crystalline silicon wafer surface in solar cell fabrication line is reported in this article. in light current-voltage results, the cells etched in NaOH 40% + NaOCl 12% = 1:2 exhibited higher short circuit current and open circuit voltage than those of the cells etched in NaOH 40% + NaOCl 12% = 1:1 solution. we have obtained 15.19% conversion efficiency in large area(156cm2) multi-Si solar cells etched in NaOH 40% + NaOCl 12% = 1:1 solution.

  • PDF

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coupled $Cl_2$/Ar Plasma (유도 결합 플라즈마($Cl_2$/Ar)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$ thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$ film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$ thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$ to YMnO$_3$ was 1.83. As a XPS analysis, the surface of etched CeO$_2$ thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF