• Title/Summary/Keyword: Si Etching

Search Result 872, Processing Time 0.027 seconds

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

A Study on the Design and Fabrication for the Micro-Mirror of Optical Disk System (광디스크용 마이크로미러의 설계 및 제작에 관한 연구)

  • 손덕수;김종완;임경화;서화일;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.211-220
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. A coupled simulation of gas flow and structural displacement of the micro mirror using the Finite-Element-Method is applied to this. The mirror was fabricated by using MEMS technology. Especially, the process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the Process reliability. The mirror size was 2.5mm${\times}$3mm and it needed about 35V for displacement of 3.2 ${\mu}$.

Inductively coupled Plasma Reactive ion etching of Ge doped silica glass using $C_2F_6$ and $NF_3$ ($C_2F_6$$NF_3$ 유도결합플라즈마를 이용한 $SiO_2$:Ge 식각에관한 연구)

  • 이석룡;문종하;김원효;이병택
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.225-225
    • /
    • 2003
  • 실리카글라스를 기초로 하는 PLC소자는 가격, 광 손실 성질과 광섬유와의 결합효율이 좋아 광통신에 응용되어지고 있으며 Ge 도핑된 실리카 글라스는 PLC소자의 코어물질로 널리 사용되고 있다. 소작제작을 위해서는 높은 식각률과 깨끗하고 적은 표면손상을 얻어야 하므로 유도결합플라즈마를 이용한 건식식각공정개발이 이루어 져야 한다. 본 연구에서는 Ge 도핑된 실리카글라스의 식각특성을 연구하기 위해 $C_2$F/6 와 NF$_3$가스를 사용하였고 ICP power, bias power, 압력, 플라즈마와 샘플간의 거리를 변화시키면서 식각속도, 표면거칠기, 메사수직도, 마스크선택도등 기본공정 조건을 연구하고 첨가가스(CH$_4$, $O_2$), 마스크 물질(Ni, Cr, PR) 도핑농도(0.3, 0.45, 0.7%)등을 변화시키면서 식각특성을 연구하였다. 그 결과 300nm/min, 정도의 식각속도를 가지고 수직한 메사각도(~89$^{\circ}$)와 미려한 표면(표면거 칠기 1.5nm 이하)를 갖는 결과를 얻었다.

  • PDF

Development of High Aspect Ratio Spacer Process using Anodic Bonding for FED (정전접합을 이용한 고종횡비의 FED용 스페이서 공정 개발)

  • Kim, Min-Su;Kim, Gwan-Su;Mun, Gwon-Jin;U, Gwang-Je;Lee, Nam-Yang;Park, Se-Gwang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.70-72
    • /
    • 2000
  • In this paper, a spacer process for FED(Field Emission Display) was developed with the glass to glass anodic bonding technology using Al film as an interlayer and a 3.5 inch monochromatic type FED was fabricated. Holder to dislocate spacers vertically was designed with (110) Si wafer by bulk etching. Spacers, $100\mum\; width\; and\; 1000\mum$ height, were formed on anode panel by spacer to glass anodic bonding and the fabricated FED was operated for emission at 1㎸ anode voltage.

  • PDF

Dependence of Electrical Resistance in Porous Silicon Layer for Detecting Organic Vapors (유기 가스 검지를 위한 다공질 실리콘층의 전기 저항 의존성)

  • Park, Kwang-Yeol;Kim, Seong-Jeen;Lee, Sang-Hoon;Choi, Bok-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.792-796
    • /
    • 2002
  • In this work, porous silicon(PS) layer is used as a sensing material to detect organic gases. To do this, PS sensors with membrane structure are fabricated. The sensors were made by applying the technologies of membrane formation by anisotropic etching of silicon, and PS layer formation by anodization in HF solution. From fabricated sensors, current-voltage (I-V) curves were measured against ethanol (called alcohol), methanol and acetone gases evaporated from 0.1 to 0.5% solution concentrations at $36^{\circ}C$. As the result, all curves showed rectifying behavior due to a diode structure between Si and PS, and the conductance of sensor devices increased largely with the organic solution concentration at high voltage of 5V.

  • PDF

Maskless patterning of Photoresist by laser (레이저에 의한 포토레지스트의 마스크리스 페터닝)

  • Lee, Kyoung-Cheol;Kim, Jae-Kwan;Lee, Cheon;Choi, Jin-Ho;Lee, Kang-Ook;Choi, Ik-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.886-888
    • /
    • 1998
  • By irradiating photoresist on Si or glass with $Ar^+$ (${\lambda}$=514 nm, CW) and Nd:YAG (${\lambda}$=266 and 532nm, pulse) laser beam, the photoresist was etched masklessly in air. Using a fourth harmonic Nd:YAG laser beam, the etching threshold of energy fluence was $25\;J/cm^2$ and the damage of substrate was appeared over $40\;J/cm^2$.

  • PDF

Low reflectance of sub-texturing for monocrystalline Si solar cell

  • Chang, Hyo-Sik;Jung, Hyun-Chul;Kim, Hyoung-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.249-249
    • /
    • 2010
  • We investigated novel surface treatment and its impact on silicon photovoltaic cells. Using 2-step etching methods, we have changed the nanostructure on pyramid surface so that less light is reflected. This work proposes an improved texturing technique of mono crystalline silicon surface for solar cells with sub-nanotexturing process. The nanotextured silicon surface exhibits a lower average reflectivity (~4%) in the wavelength range of 300-1100nm without antireflection coating layer. It is worth mentioning that the surface of pyramids may also affect the surface reflectance and carrier lifetime. In one word, we believe nanotextruing is a promising guide for texturization of monocrystalline silicon surface.

  • PDF

Fabrication of Tip of Probe Card Using MEMS Technology (MEMS 기술을 이용한 프로브 카드의 탐침 제작)

  • Lee, Keun-Woo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.361-364
    • /
    • 2008
  • Tips of probe card were fabricated using MEMS technology. P-type silicon wafer with $SiO_2$ layer was used as a substrate for fabricating the probe card. Ni-Cr and Au used as seed layer for electroplating Ni were deposited on the silicon wafer. Line patterns for probing devices were formed on silicon wafer by electroplating Ni through mold which formed by MEMS technology. Bridge structure was formed by wet-etching the silicon substrate. AZ-1512 photoresist was used for protection layer of back side and DNB-H100PL-40 photoresist was used for patterning of the front side. The mold with the thickness of $60{\mu}m$ was also formed using THB-120N photoresist and probe tip with thickness of $50{\mu}m$ was fabricated by electroplating process.

Fabrication and Characterization of Solar Cells Using Cast Polycrystalline Silicon (Cast Poly-Si을 이용한 태양전지 제작 및 특성)

  • 구경완;소원욱;문상진;김희영;홍봉식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.55-62
    • /
    • 1992
  • Polycrystalline silicon ingots were manufactured using the casting method for polycrystalline silicon solar cells. These ingots were cut into wafers and ten n$^{+}$p type solar cells were made through the following simple process` surface etching, n$^{+}$p junction formation, metalization and annealing. For the grain boundary passivation, the samples were oxidized in O$_2$ for 5 min. at 80$0^{\circ}C$ prior to diffusion in Ar for 100 min. at 95$0^{\circ}C$. The conversion efficiency of polycrystalline silicon solar cells made from these wafers showed about 70-80% of those of the single crystalline silicon solar cell and superior conversion efficiency, compared to those of commercial polycrystalline wafers of Wacker Chemie. The maximum conversion efficiency of our wafers was indicated about 8%(without AR coating) in spite of such a simple fabrication method.

  • PDF