• Title/Summary/Keyword: Shrinking Core Model

Search Result 47, Processing Time 0.022 seconds

Numerical and experimental study for Datong coal gasification in entrained flow coal gasifier

  • Park, Y. C.;Park, T. J.;Kim, J. H.;Lee, J. G.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2001.11a
    • /
    • pp.69-76
    • /
    • 2001
  • The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. By divding the complicated coal gasification process into several simplified stages suh as slurry evaporation, coal devolitilisation and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The k-$\varepsilon$turbulence model was used for the gas phase flow while the Random-trajectory model was applied to describe the behavior of the coal slurry particles. The unreacted-core shrinking model and modified Eddy Break-Up(EBU) model were used to simulate the heterogeneous and homogeneous reactions, respectively. The simulation results obtained the detailed informations about the flow field, temperature inside the gasifier. Meanwhile, the simulation results were compared with the experimental data as function of $O_2$/coal ratio. It illustrated that the calculated carbon conversions agreed with the measured ones and that the measurd quality of the atngas was better than the calculated one when the $O_2$/coal ratio increases. The result was related with the total heat loss through the gasifier and uncertain kinetics for the heterogeneous reactions.

  • PDF

Removal and Regeneration of $SO_2$ by Cupric Oxide Supported on Zeolite (CuO/Zeolite에 의한 $SO_2$의 제거 및 재생)

  • 이승재;신창섭;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.161-167
    • /
    • 1990
  • The reaction of sulfur dioxide with cupric oxide supported on zeolite was investigated over a temperature range of $250{\sim}450^{{\circ}C$. After the completion of the $SO_2$ removal reaction, the cupric sulfate produced was regenerated to copper by hydrogen or LPG. The experimental results showed that the removal efficiency of $SO_2$ was improved with temperature increase and with $SO_2$ inlet concentration decrease. The reaction of $SO_2$ with CuO/Zeolite was well explained by the shrinking unreacted core model using first order chemical reaction control and diffusion control. THe reaction rate constant and the effective diffusivity were respectively as follows: 1k (cm/s) = 2.519 exp[-10991 (cal/mol)/RT] $De(cm^2/s) = 2.06 \times 10^{-5} exp[-8380 (cal/mol)/RT]$

  • PDF

Removal of Sulfur Dioxide by Cupric Oxide and Reduction of Cupric Sulfate by Hydrogen (산화구리에 의한 이산화황의 제거와 수소에 의한 황산구리의 환원)

  • 노용우;이명철;이재훈;이태희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 1994
  • The reaction of sulfur dioxide with cupric oxide was investigated over a temperature range of 300-50$0^{\circ}C$, and the regenaration reaction was studied using cupric sulfate and hydrogen over a temperature range of 240-35$0^{\circ}C$ in a fixed bed reactor. The experimental results showed that the efficiencies for elimination and regenaration reactions were maximum at 45$0^{\circ}C$ and at 30$0^{\circ}C$ respectively. In both cases the experimental data could be interpreted properly by shrinking unreacted core model while the chemical reaction is rate controlling step. The reaction rate constants were determined to be 24.88 exp(-6724/RT) (cm/min) for elimination reaction, and 0.0165 exp(-2047/RT)(cm/min ) for regeneration reaction.

  • PDF

Kinetic Studies of Pyrolysis and Char-$CO_2$ Gasification on Low Rank Coals (저급탄의 열분해 및 촤-$CO_2$ 가스화 반응의 속도론적 연구)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Park, Soo-Nam;Byun, Yong-Soo;Seo, Seok-Jung;Yun, Yong-Seung;Lee, Jin-Wook;Kim, Yong-Jeon;Kim, Joo-Hoe;Park, Sam-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.114-119
    • /
    • 2011
  • Thermogravimetric analysis(TGA) was carried out for pyrolysis and char-$CO_2$ gasification of low rank Indonesian ABK coal and China lignite. The pyrolysis rate was successfully described by a two-step model adopting the modified Kissinger method. The shrinking core model, when applied to char-$CO_2$ gasification gave initial activation energy of 189.1 kJ/mol and 260.5 kJ/mol for the ABK coal and China lignite, respectively. Thus, the char-$CO_2$ gasification has been successfully simulated by the shrinking core model. In particular, the activation energy of char-$CO_2$ gasification calculated in this work is similar to the results on the anthracite coal, but considerable difference exists when other models or coal types are used.

A Study of the Landscape Analysis at Su-ji/Gi-heung in Young-in city using the FRAGSTATS Model (FRAGSTATS 모델을 이용한 용인시 수지/기흥 도시 녹지 변화 분석에 관한 연구)

  • Kwon, Sun-Soon;Choi, Sun-Hee;Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.781-787
    • /
    • 2012
  • The purpose of this study was to analyze the landscape changes at Su-ji and Gi-heung in Young-in city using FRAGSTATS Model. Landscape Indices obtained by this model can explain the structural change of urban green zone and fragmentation resulting from development. As results of this study, Gi-heung showed worse quality of landscape in 2007, comparing 2000. However, in Su-ji, there were several better landscape indices in the same 2007/2000 comparison, even though the little shrinking of green zone and separation of core area. It could assume that the reason was caused by conservation policy of urban green zone. This study could provide the useful methods for finding the problems and searching the alternatives considering the development of urban green zone.

Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

  • Kim, Chul-Joo;Yoon, Ho-Sung;Chung, Kyung Woo;Lee, Jin-Young;Kim, Sung-Don;Shin, Shun Myung;Kim, Hyung-Seop;Cho, Jong-Tae;Kim, Ji-Hye;Lee, Eun-Ji;Lee, Se-Il;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid ($H_2SO_4$) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of $H_2SO_4$ was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol $H_2SO_4$, and the effect of temperatures was investigated under the condition of 30 to $80^{\circ}C$. As a result, praseodymium oxide ($Pr_6O_{11}$) existing in the slag was completely converted into praseodymium sulfate ($Pr_2(SO_4)_3{\cdot}8H_2O$) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be $9.195kJmol^{-1}$. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be $19.106kJmol^{-1}$. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.

Carbothermic Reduction of Zinc Oxide with Iron Oxide (산화아연(酸化亞鉛)의 탄소열환원반응(炭素熱還元反應)에서 산화철(酸化鐵)의 영향(影響))

  • Kim, Byung-Su;Park, Jin-Tae;Kim, Dong-Sik;Yoo, Jae-Min;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.44-51
    • /
    • 2006
  • Most electric arc furnace dust (EAFD) treatment processes to recover zinc from EAFD employ carbon as a reducing agent for the zinc oxide in the EAFD. In the present work, the reduction reaction of zinc oxide with carbon in the present of iron oxide was kinetically studied. The experiments were carried out at temperatures between 1173 K and 1373 K under nitrogen atmosphere using a weight-loss technique. From the experimental results, it was concluded that adding the proper amount of iron oxide to the reactant accelerates the reaction rate of zinc oxide with carbon. This is because iron oxide in the reduction reaction of zinc oxide with carbon promotes the carbon gasification reaction. The spherical shrinking core model for a surface chemical reaction control was found to be useful in describing kinetics of the reaction over the entire temperature range. The reaction has an activation energy of 53 kcal/mol (224 kJ/mol) for ZnO-C reaction system, an activation energy of 42 kcal/mol (175 kJ/mol) for $ZnO-Fe_{2}O_{3}-C$ reaction system, and an activation energy of 44 kcal/mol (184 kJ/mol) for ZnO-mill scale-C reaction system.

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors (상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성)

  • Son, Sung Real;Go, Kang Seok;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.

Thermodynamic cheracteristics of micro algae for energy conversion (조류 부산물의 에너지 전환을 위한 열역학 특성 고찰)

  • Lee, See-Hoon;Seo, Myung-Won;Kim, Sang-Don
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.447-450
    • /
    • 2009
  • 2세대 바이오연료 생산에 적용되는 미세 조류의 열화학적 전환 특성을 열천칭 반응기를 이용하여 고찰하였다. 반응 온도 (500 - $800^{\circ}C$)와 수분 함량 (0-60wt.%)을 변수로 하였으며 미세조류로서 가장 널리 이용되는 클로렐라를 이용하였다. 대표적인 열화학적 전환 반응인 열분해, 부분 산화 (5%), 연소 반응을 고찰하였으며 실험 영역에서 반응온도 및 산소의 분압이 증가함에 따라 탄소 전환율이 증가하였으며 Shrinking-core model을 사용하여 반응 차수를 구하였다. 가스화 영역인 부분 산화 (5%) 조건에서의 activation energy와 frequency factor 값은 각각 19.60 kJ/mol, $2.47{\times}10-1\;s^{-1}$ 이었으며 산소 분압에 의한 반응 차수는 0.209 임을 확인하였다. 수분 함량에 따른 클로렐라의 반응 특성을 살펴보면, 수분 함량이 증가함에 따라 탄소 전환율과 반응성이 감소하는 경향이 발견되었다. 열분해의 경우, 건조 시료에 비하여 수분 함량이 늘어남에 따라 탄소 전환율과 반응성이 급격하게 감소하는 경향을 보였다. 반면, 부분 산화(5%) 및 연소의 경우에는 건조 시료, 수분 함량 20, 40% 시료의 탄소 전환율과 반응성은 거의 일정하였다. 그러나 수분 함량이 60%가 되면서 탄소 전환율 및 반응성이 급격히 떨어졌다.

  • PDF

$UO_2$ 소결펠렛의 건/습식 산화반응 연구

  • 김익수;이원경;신희성;신영준;노성기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.805-805
    • /
    • 1995
  • 핵연료저장시설의 화재 등 극단적인 사고조건하에서 $UO_2$ 소결펠렛의 습식산화와 건식산화에 대한 연구를 수행하였다. 손상된 지르칼로이 피복관 속의 $UO_2$ 소결펠렛을 산성분위기의 습윤조건하에서 산화시킬 때의 $UO_2$ 펠렛의 산화속도는 IDR(mg/$\textrm{cm}^2$.min) = 1.55 [H$^{+}$]$^{1.21}$ 로 나타났다. 또한 습윤조건하에서 $UO_2$ 분말에 알카리 및 알카리 토금속 산화물, 그리고 백금족 및 회토류 산화물 등과 같은 불순물들이 존재할 때의 산화속도를 조사하였으며 이들에 대한 영향도 관찰하였다. 핵연료저장시설의 가상화재를 바탕으로 한 400~$700^{\circ}C$의 온도범위에서, 피복관이 씌워진 $UO_2$ 소결펠렛의 건식산화반응을 조사한 바 $UO_2$ 소결펠렛은 산화초기에 U$_4$O$_{9}$ 또는 U$_3$O$_{7}$ 등의 중간상 형성에 따른 3-4%의 부피축소에 의해 결정립계 균열이 일어나고, $600^{\circ}C$ 이하에서는 온도증가에 따라 중간상에서 U$_3$O$_{8}$ 상으로의 상변화에 의한 부피팽창으로 피복관의 변형과 함께 산화속도의 가속을 발견할 수 있었고, $600^{\circ}C$ 이상에서는 핵연료소자의 소성변형으로 인한 산화속도의 지연을 발견할 수 있었다. 또한 $UO_2$ 펠렛의 건식산화거동은 기체-고체 반응시의 전형적인 형태인 shrinking core model에 잘 적용될 것으로 판단되었다.

  • PDF