• Title/Summary/Keyword: Shrinkage solution

Search Result 155, Processing Time 0.022 seconds

A Study on the Shrinkage of Silk Fabric by $Ca(NO_3){_2}$ Solution

  • Choi, Se-Min;Shin, Yu-Ju;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.13 no.3
    • /
    • pp.136-148
    • /
    • 2009
  • The phenomenon of the shrinkage of silk fibers induced by inorganic salts including LiBr, $Ca(NO_3){_2}$, and $CaCl_2$, has been studied up to the present as one of the finishing methods of silk. It is expected that the shrinkage phenomenon may greatly contribute to the realization of the high sensibility of silk fibers. Especially the shrinkage enables the expression of three-dimensional appearance of silk fabrics along with the improvements in dimensional stability, resilience in stretching, and comfort. Numerous theoretical studies on the contraction phenomenon by $Ca(NO_3){_2}$ have been conducted so far. These studies have focused mostly on the silk fibers. It is difficult to find studies on silk fabrics. The negative aspects of the finishing are such as strength drop, yellowish discoloration, and fiber damage. These should also be considered as well as the positive aspects. In this study, the phenomenon of salt shrinkage is diversely reviewed by applying $Ca(NO_3){_2}$ solution for the silk fabrics as objects. The changes in the air permeability, thickness, and color were investigated with focus on the shrinkage of the silk fabrics according to the changes in treatment conditions. Some findings from this study are as follows: Within short period of time at the initiation of salt shrinkage, the salt shrinkage proceeds effectively. In the case of concentration of 47.4%, or 46.3% of $Ca(NO_3){_2}$ solution, appropriate treatment time seems to be 20seconds, or $2{\sim}8$minutes, respectively. Excessive shrinkage is obtained when lower liquor ratio is adopted. As a result, the condition is acting extremely disadvantageously against the thickness and yellow discoloration aspects.

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Shrinkage Solution of Quantification Method III (수량화 제3 방법의 축소 해)

  • Huh Myung-Hoe;Lee Yong-Goo
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.331-338
    • /
    • 2006
  • Quantification method III is designed by C. Hayashi as visualizing technique for two-way cross-classified tables. Specially in Japan, its usefulness is timely proven in social and marketing surveys. In several instances, relatively large quantification scores are assigned to low-frequency categories. Thus, they lead to unreliable data interpretation. The aim of this study is to develop stable solution to overcome such traits of quantification method III. The solution is of shrinkage type induced by small perturbations and is applied to a multiple response data obtained in a Korean social survey.

A Similarity Solution for the Directional Casting of Peritectic Alloys in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 포정합금의 방향성주조에 대한 상사해)

  • Yu, Ho-Seon;Jeong, Jae-Dong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.485-495
    • /
    • 2001
  • This paper presents a similarity solution for the directional casting of binary peritectic alloys in the presence of shrinkage-induced flow. The present model retains essential ingredients of alloy solidification, such as temperature-solute coupling, macrosegregation, solid-liquid property differences, and finite back diffusion in the primary phase. An algorithm for simultaneously determining the peritectic and liquidus positions is newly developed, which proves to be more efficient and stable than the existing scheme. Sample calculations are performed for both hypo- and hyper-peritectic compositions. The results show that the present analysis is capable of properly resolving the solidification characteristics of peritectic alloys so that it can be used for validating numerical models as a test solution.

A Preliminary Study on the Development of a High Elastic Modulus and Low-Shrinkage Roller-Compacted Concrete Base for Composite Pavement (복합포장용 고탄성 저수축 롤러전압콘크리트 기층 개발을 위한 기초연구)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • PURPOSES : The main purpose of this study is to develop a high elastic modulus and low-shrinkage roller-compacted concrete base (RCCB) in order to prevent fatigue cracking and reflective cracking in the asphalt surface layer of composite pavement. Using a rigid base material with low shrinkage can be a solution to this problem. Moreover, a strong rigid base with high elastic modulus is able to shift the location of critical tensile strain from the bottom of the asphalt layer to the bottom of the rigid base layer, which can prevent fatigue cracking in the asphalt layer. METHODS : Sensitivity analysis of composite pavement via numerical methods is implemented to determine an appropriate range of elastic modulus of the rigid base that would eliminate fatigue cracking. Various asphalt thicknesses and elastic moduli of the rigid base are used in the analysis to study their respective influences on fatigue cracking. Low-shrinkage RCC mixture, as determined via laboratory testing with various amounts of a CSA expansion agent (0%, 7%, and 10%), is found to achieve an appropriate low-shrinkage level. Shrinkage of RCC is measured according to KS F 2424. RESULTS : This study shows that composite pavements comprising asphalt thicknesses of (h1) 2 in. with E2 > 19 GPa, 4 in. with E2 > 15 GPa, and 6 in. with E2 > 11 GPa are able to eliminate tensile strain in the asphalt layer, which is the cause of fatigue cracking in this layer. Shrinkage test results demonstrate that a 10% CSA RCC mixture can reduce shrinkage by 84% and 93% as compared to conventional RCC and PCC, respectively. CONCLUSIONS : According to the results of numerical analyses using various design inputs, composite pavements are shown to be able to eliminate fatigue cracking in composite pavement. Additionally, an RCC mixture with 10% CSA admixture is able to reduce or eliminate reflective cracking in asphalt surfaces as a result of the significant shrinkage reduction in the RCC base. Thus, this low-shrinkage base material can be used as an alternative solution to distresses in composite pavement.

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

Change in the Egg Diameter of Chub Mackerel Scomber japonicus Preserved in Fixing Solution (다양한 고정용액에 보존된 고등어(Scomber japonicus) 난의 경과 시간에 따른 난경 변화)

  • Kim, So Ra;Kim, Jung Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.67-72
    • /
    • 2022
  • We investigated the changes in the egg diameter of chub mackerel Scomber japonicus with the stages of egg development (and distinguished between hydrated oocyte and non-hydrated oocyte) for 1, 2, 3, 5, 10, 15 and 30 days. The chub mackerel oocytes were preserved in seven fixing solutions (70% ethyl alcohol, 99.9% ethyl alcohol, 5% formalin, 10% formalin, 5% neutral buffered formalin, 10% neutral buffered formalin and Gilson's solution). At 30 days, the chub mackerel hydrated oocytes preserved in 70% ethyl alcohol and 99.9% ethyl alcohol had shrunk by 5.2% and 7.9%, respectively. Similarly, the non-hydrated oocytes in the same solutions shrunk by 10.3% and 14.0%, respectively. Oocytes preserved in Gilson's solution had an average egg diameter decrease in both the hydrated oocyte (by 16.9%) and non-hydrated oocytes (by 15.6%). The diameter of the preserved hydrated oocytes did not significantly differ between the 5% formalin, 10% formalin, 5% neutral buffered formalin and 10% neutral buffered formalin, with shrinkage percentages of 0.6%, 0.1%, 1.9% and 3.4%, respectively (P>0.05). Similarly, the shrinkage percentages of the non-hydrated oocytes were 4.3% (5% formalin), 5.5% (10% formalin), 4.3% (5% neutral buffered formalin), and 4.1% (10% neutral buffered formalin).

Measurement of Porcelain Shrinkage After Firing Using the Phase-Shifting Profilometry (위상이동 형상측정법을 이용한 도재 소성시의 도재 수축률의 측정)

  • Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.800-808
    • /
    • 1999
  • To compare several porcelains made by various manufacturers in shrinkage after firing and investigate the effect of condensation on shrinkage, specimens were prepared and the volume of each body was measured by the phase-shifting profilometry. Baseplate wax was cut by $2.5cm{\times}2cm$ and cast in nonprecious metal(Verabond, U.S.A.), then any surfaces of specimens were abrased and polished on the SiC abrasing papers, preparing 120 specimens. Specimens were divided into six groups according to the porcelain used, and the porcelain used in each group were as follows. Group I : Ceramco dentin porcelain Group B : Creation dentin porcelain Group III : Creation margin porcelain Group IV : Vintage margin porcelain Group V : Vita dentin porcelain Group VI : Vintage dentin porcelain Porcelain was built up on the metal plates using a small spoon and then solution matching to each porcelain was added. The six groups are subdivided into a and b. In subgroup a, only excessive solution was absorbed with tissue and in subgroup b, porcelain was condensed sufficiently. When build-up was completed, the shape was measured using the phase-shifting profilometry. After that, specimens were fired in the furnace programed for each porcelain and then their changed shape were measured again. Using the difference between the two above measurements, the ratio of shrinkage was calculated. Obtained results were as follows ; 1. Regardless of condensation, the volume of fired specimens were not different significantly between the two subgroups a and b in the same group. 2. The ratios of shrinkage were significantly higher in the groups porcelain built-up was condensed than in the groups not condensed 3. The ratios of shrinkage were in the range of 36.81-27.19% in the groups porcelain built up was condensed and 44.52-37.54% in the other groups not condensed.

  • PDF

Studies on the Shrinkage of Silk Yarn by Neutral Salts (견의 중성염류에 의한 염축에 관한 연구)

  • 이용우;이광길
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.87-92
    • /
    • 1991
  • The shrinkages and physical properties of silk yarn were studied on the effect of treatment concentration, time and temperature with various neutral salts. The degummed silk yarn was shrunk about 35 percent by highly concentrated solution of Ca(NO3)2 on conditions of S.G.(special gravity) 1.45 at 9$0^{\circ}C$ or S. G. 1.46 at 8$0^{\circ}C$. About 40 percent of silk yarn was contracted in length by the treatment of CaCl2 solution on conditions of S. G. 1.33 at 9$0^{\circ}C$ for 5 mins. or at 85$^{\circ}C$ for 10 mins. By treating the concentrated solution of LiBr the silk yarn showed about 40 percent of shrinkage on a conditions of S. G. 1.38, $25^{\circ}C$ 24hrs. The physical properties of salt-treated silk yarn could be significantly changed with shrinkage variations. There were some differences in shrinkages between different type of salts. However, it was observed that generally the tenacity was decreased and breaking elongation increased as the shrinkage increased. The bulkiness of salt-treated silk yarn was increased by 110 to 120 percent compared with untreated yarn.

  • PDF