• 제목/요약/키워드: Shrinkage methodology

검색결과 21건 처리시간 0.024초

MS Point 저감 용접재에 적용한 냉각시 용접부 열변형률 분석에 관한 연구 (A Study on Analyzing Thermal Strain of Weldment during Cooling used at Low MS Point Weld Consumables)

  • 하윤석;남성길;박세진;권창길
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.37-43
    • /
    • 2013
  • This study targets to make clear the connection between MS (Martensite start) point and welding shrinkage. We approved that a Martensite-transformed weldment may not yield state under low MS point, but also admitted the limitation of numerical calculation by inherent strain approach or thermal strain approach. Therefore, new thermal strain formulae during cooling stages were made. As a thermal strain is obtained by integrating thermal extension coefficient, a constant of integration should be decided. In our suggested formulae, the origin was based on totally remained austenite, and added strain from volume changes in Martensite transformation was based on totally transformed ferrite. Through the suggested methodology, It is verified that an MS point under a critical temperature can let weld shrinkage relax and the critical value can be obtained. For supporting this process, 15 weld-consumables were made, were tested by fillet type and were measured. As a result, a positive correlation between MS point and level of weld-distortion was obtained, but it was rather weak.

DNN을 활용한 콘크리트 건조수축 예측 모델의 활성화 함수 비교분석 (Comparison on of Activation Functions for Shrinkage Prediction Model using DNN)

  • 한준희;김수호;백성진;한수환;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.121-122
    • /
    • 2022
  • In this study, compared and analyzed various Activation Functions to present a methodology for developing a natural intelligence-based prediction system. As a result of the analysis, ELU was the best with RMSE: 62.87, R2: 0.96, and the error rate was 4%. However, it is considered desirable to construct a prediction system by combining each algorithm model for optimization.

  • PDF

Modeling the polypropylene fiber effect on compressive strength of self-compacting concrete

  • Nazarpour, Mehdi;Asl, Ali Foroughi
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.323-336
    • /
    • 2016
  • Although the self-compacting concrete (SCC) offers several practical and economic benefits and quality improvement in concrete constructions, in comparison with conventionally vibrated concretes confronts with autogenously chemical and drying shrinkage which causes the formation of different cracks and creates different problems in concrete structures. Using different fibers in the mix design and implementation of fibrous concrete, the problem can be solved by connecting cracks and micro cracks together and postponing the propagation of them. In this study an experimental investigation using response surface methodology (RSM) based on full factorial design has been undertaken in order to model and evaluate the polypropylene fiber effect on the fibrous self-compacting concrete and curing time, fiber percentage and fiber amount have been considered as input variables. Compressive strength has been measured and calculated as the output response to achieve a mathematical relationship between input variables. To evaluate the proposed model analysis of variance at a confidence level of 95% has been applied and finally optimum compressive strength predicted. After analyzing the data, it was found that the presented mathematical model is in very good agreement with experimental results. The overall results of the experiments confirm the validity of the proposed model and this model can be used to predict the compressive strength of fibrous self-compacting concrete.

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.

다층 맞대기용접의 쉘 요소 기반 변형해석법 개발 (Development of Distortion Analysis Method for Multi-pass Butt-welding Based on Shell Element)

  • 하윤석;양진혁
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.54-59
    • /
    • 2010
  • Ship Blocks are assembled by welding, and among them, welding between large blocks (Pre-erection stage) is used as feature of butt. In this process, local material has a experience of thermal cycle and become finally shrunk. As for inconsistency of shrunk weldments and adjacent regions, ship structure would be deformed locally and globally. Thermal distortion analyses are done for control of these processes, and methodologies capable of ship block size among them are using 2-D shell element in FEM. A shell element takes charge of plate, so it has its thickness which is important for angular distortion by welding. By the way, a butt-welding consists normally of several passes, and weldment thickness are different at each pass. If a calculated final one-time welding shrinkage is acting on the shell element whose thickness is same as it of plate, then deformation value must be underestimated. This research developed a methodology that total deformation after multi-pass welding can be analyzed by one time at shell element having original thickness of its plate. We use the SDB thermal distortion analysis method and verified by several experiment. The both experimental and analysis results showed good agreements.

Rapid prediction of long-term deflections in composite frames

  • Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.547-563
    • /
    • 2015
  • Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.

재활용 고강도 폴리스틸렌(HIPS)의 강도 특성에 관한 연구 (The Research about Strength Properties of Recycled High Impact Polystyrene)

  • 김종순;강태호;이용연;김영수;김인관
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2005년도 춘계임시총회 및 제25회 학술발표대회
    • /
    • pp.113-118
    • /
    • 2005
  • 플라스틱 재활용에서 물성변화에 대한 신뢰성의 확보는 재활용을 확대시킬 수 있는 중요한 과제이다. 폴리 스틸렌과 같은 열가소성수지는 재활용이 가능하지만 재활용 수지에 대한 균일한 물성의 신뢰성이 부족하기 때문에 제한적으로 사용되고 있다. 본 연구는 고강도 폴리 스틸렌(HIPS)을 대상으로 재활용의 정도에 따른 물성의 변화를 실험적으로 수행하였다. 재활용을 하지 않은 수지와 재활용 수지를 중량비를 기준으로 혼합하여 실험을 수행하였으며, 이에 따른 기계적인 물성의 변화를 측정하였다.

  • PDF

Gender Diversity, Institutional Ownership and Earning Management: Case on Distribution Industry in Indonesia

  • ZUBAIDAH, Siti;IRAWAN, Dwi;SUMARWIJAYA, Sumarwijaya;WIDYASTUTI, Aviani;ARISANTI, Ike
    • 유통과학연구
    • /
    • 제19권11호
    • /
    • pp.17-25
    • /
    • 2021
  • Purpose: This study aims to examine the effect of gender diversity and institutional ownership on earnings management in distribution industry sub-sector companies listed on the Indonesia Stock Exchange in 2017-2018. Research design, data and methodology: This research is case study research, where the population in this study are all distribution sub-sector companies listed on the IDX in 2017-2018. The sample selection technique used was purposive sampling and obtained 74 companies with the 2017-2018 research period. Multiple linear regression analysis was used in this study, using Stata 17. Results: The results of this study indicate that: 1) Gender diversity has a negative effect on earnings management. 2) Institutional ownership has a negative effect on earnings management. Conclusions: This study contributes to the agency theory where gender diversity and institutional ownership can reduce the agency conflict that the shrinkage of earnings management. These results indicate that companies in which there are female directors will reduce earnings management practices, this is due to the attitude of female directors who tend to avoid risk. The results also show that institutional ownership will also lead to reduced levels of earnings management, because institutional investors will increase its oversight of the company.

Effects of shrinkage in composite steel-concrete beam subjected to fire

  • Nacer Rahal;Abdelaziz Souici;Houda Beghdad;Mohamed Tehami;Dris Djaffari;Mohamed Sadoun;Khaled Benmahdi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.375-382
    • /
    • 2024
  • The network theory studies interconnection between discrete objects to find about the behavior of a collection of objects. Also, nanomaterials are a collection of discrete atoms interconnected together to perform a specific task of mechanical or/and electrical type. Therefore, it is reasonable to use the network theory in the study of behavior of super-molecule in nano-scale. In the current study, we aim to examine vibrational behavior of spherical nanostructured composite with different geometrical and materials properties. In this regard, a specific shear deformation displacement theory, classical elasticity theory and analytical solution to find the natural frequency of the spherical nano-composite structure. The analytical results are validated by comparison to finite element (FE). Further, a detail comprehensive results of frequency variations are presented in terms of different parameters. It is revealed that the current methodology provides accurate results in comparison to FE results. On the other hand, different geometrical and weight fraction have influential role in determining frequency of the structure.

Cumulative Angular Distortion Curve of Multi-Pass Welding at Thick Plate of Offshore Structures

  • Ha, Yunsok;Choi, Jiwon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.106-114
    • /
    • 2015
  • In the fabrication of offshore oil and gas facilities, the significance of dimension control is growing continuously. But, it is difficult to determine the deformation of the structure during fabrication by simple lab tests due to the large size and the complicated shape. Strain-boundary method (a kind of shrinkage method) based on the shell element was proposed to predict the welding distortion of a structure effectively. Modeling of weld geometry in shell element is still a difficult task. In this paper, a concept of imaginary temperature pair is introduced to handle the effect of geometric factors such as groove shape, plate thickness and pass number, etc. Single pass imaginary temperature pair formula is derived from the relation between the groove area and the FE mesh size. By considering the contribution of each weld layer to the whole weldment, multi-pass imaginary temperature is also derived. Since the temperature difference represents the distortion increment, cumulative distortion curve can be drawn by integrating the temperature difference. This curve will be a useful solution when engineers meet some problems occurred in the shipyard. A typical example is shown about utilization of this curve. Several verifications are conducted to examine the validity of the proposed methodology. The applicability of the model is also demonstrated by applying it to the fabrication process of the heavy ship block. It is expected that the imaginary temperature model can effectively solve the modeling problem in shell element. It is also expected that the cumulative distortion curve derived from the imaginary temperature can offer useful qualitative information about angular distortion without FE analysis.