• Title/Summary/Keyword: Shrinkage cracks

검색결과 181건 처리시간 0.022초

Structural Integrity Evaluation for Interference-fit Flywheels in Reactor Coolant Pumps of Nuclear Power Plants

  • Park June-soo;Song Ha-cheol;Yoon Ki-seok;Choi Taek-sang;Park Jai-hak
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.1988-1997
    • /
    • 2005
  • This study is concerned with structural integrity evaluations for the interference-fit flywheels in reactor coolant pumps (RCPs) of nuclear power plants. Stresses in the flywheel due to the shrinkage loads and centrifugal loads at the RCP normal operation speed, design overspeed and joint-release speed are obtained using the finite element method (FEM), where release of the deformation-controlled stresses as a result of structural interactions during rotation is considered. Fracture mechanics evaluations for a series of cracks assumed to exist in the flywheel are conducted, considering ductile (fatigue) and non-ductile fracture, and stress intensity factors are obtained for the cracks using the finite element alternating method (FEAM). From analysis results, it is found that fatigue crack growth rates calculated are negligible for smaller cracks. Meanwhile, the material resistance to non-ductile fracture in terms of the critical stress intensity factor (K$_{IC}$) and the nil-ductility transition reference temperature (RT$_{NDT}$) are governing factors for larger cracks.

High-Temperature Drying of Bamboo Tubes Pretreated with Polyethylen Glycol Solution

  • Kang, Chun-Won;Chung, Woo-Yang;Han, Jae-Ok;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권2호
    • /
    • pp.139-146
    • /
    • 2017
  • This study was conducted to develop a new drying technology in order to quickly and massively dry bamboo tubes without crack and check. The bamboo tubes with the diameter of 45 mm - 68 mm had been impregnated in the solution of PEG-1000, and then were dried under room temperature and high temperature, respectively. The cracks occurred on all control specimens while no cracks were found on PEG treated specimens during drying at room temperature due to effect of PEG restraining the circumferential shrinkage of bamboo tube. But the drying period of this method was too long (200 days) compared to 10 hours of kiln drying. During fast high temperature drying, cracks occurred on all control specimens, but no cracks were found on PEG treated specimens, which could be accounted for more solidified PEG due to higher drying temperature and faster drying rate, and the tension set formed on the surface of bamboo tube in the early stage of drying owning to high drying temperature and low relative humidity. Thus, it is advised that PEG treated bamboo tube should be fast dried at high temperature in order to not only prevent crack or check in short drying period but also increase the dimensional stability of the products made of bamboo tubes.

Experimental study on deformation of concrete for shotcrete use in high geothermal tunnel environments

  • Cui, Shengai;Liu, Pin;Wang, Xuewei;Cao, Yibin;Ye, Yuezhong
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.443-449
    • /
    • 2017
  • Taking high geothermal tunnels as background, the deformation of concrete for shotcrete use was studied by simulating hot-humid and hot-dry environments in a laboratory. The research is made up by two parts, one is the influence of two kinds of high geothermal environments on the deformation of shotcrete, and the other is the shrinkage inhibited effect of fiber materials (steel fibers, polypropylene fibers, and the mixture of both) on the concrete in hot-dry environments. The research results show that: (1) in hot and humid environments, wet expansion and thermal expansion happened on concrete, but the deformation is smooth throughout the whole curing age. (2) In hot and dry environments, the concrete suffers from shrinkage. The deformation obeys linear relationship with the natural logarithm of curing age in the first 28 days, and it becomes stable after the $28^{th}$ day. (3) The shrinkage of concrete in a hot and dry environment can be inhibited by adding fiber materials especially steel fibers, and it also obeys linear relationship with the natural logarithm of curing age before it becomes stable. However, compared with no-fiber condition, it takes 14 days, half of 28 days, to make the shrinkage become stable, and the shrinkage ratio of concrete at 180-day age decreases by 63.2% as well. (4) According to submicroscopic and microscopic analysis, there is great bond strength at the interface between steel fiber and concrete. The fiber meshes are formed in concrete by disorderly distributed fibers, which not only can effectively restrain the shrinkage, but also prevent the micro and macro cracks from extending.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Effect of Freezing and Thawing on the Histology and Ultrastructure of Buffalo Muscle

  • Sen, A.R.;Sharma, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권9호
    • /
    • pp.1291-1295
    • /
    • 2004
  • Histology and transmission electron microscopy studies were carried out on buffalo muscles that were subjected to repeated freeze-thaw cycles at -10 and $-18^{\circ}C$. In the first freeze thaw cycle ($-10^{\circ}C$) structures of muscle showed slight change and closely resembled to those of normal muscle. There were frequent gaps in the half way across the fibres and some cracks in individual fibre were also noticed in second freeze thaw cycle. In the muscle frozen at $-18^{\circ}C$, more pronounced shrinkage with extensive damage of fibres with tearing was observed. The interfibrillar gaps were wider, shrinkage and tearing of the fibres were more distinct after second freeze-thaw cycle. After the second cycle, the interior portion showed large scale degradation of the ultrastructure. Our studies of buffalo muscle showed that under the proper condition, little structural damage takes place in the meat histology and ultrastructure under repeated freeze-thaw conditions. This study adds continued weight to the evidence that limited freeze-thaw cycles will not deteriorate the quality of meat.

계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구 (A study on the cracking of tunnel lining by measurement and numerical analysis)

  • 황학;정헌철;김유석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

Abrasion Resistant Paver Production Utilising Modern Brickmaking Technology: Possibilities and Difficulties

  • Ozucelik, Nazmi
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.368-371
    • /
    • 1998
  • The work aims to evaluate the necessary physical properties of Abrasion Resistant Pavers designed for high volume pedestrian and road vehicle traffic and their influence on the selection of raw materials and ceramic processes. The pavers' specifications such as high strength and ware resistance demand a careful clay preparation, slow drying, slow firing and a balanced chemical and mineralogical composition. Therefore, developing abrasion Resistant Pavers in existing modern brickmaking plants, which are designed primarily for making bricks and pavers for domestic applications, has become a challenge for manufacturers and ceramic professionals. The significance of quality control and research and development in the production of these high class pavers is also emphasised in this work through the investigation of a paver that exhibits shrinkage cracking.

  • PDF

내부양생을 적용한 모르타르의 양생조건에 따른 압축강도 특성 (The Characteristics of Compressive Strength in Mortar with Internal Curing According to Curing Condition)

  • 김주형;조영근;이광명
    • 한국건설순환자원학회논문집
    • /
    • 제6권2호
    • /
    • pp.87-93
    • /
    • 2018
  • 건설 구조물에서의 고강도 콘크리트 사용은 꾸준히 증가하고 있다. 그러나 고강도 콘크리트는 상대적으로 낮은 물-바인더비를 가지고 있어 초기 재령에서 수화과정에 발생하는 수화열 및 수축 등으로 인해 균열 등과 같은 문제점이 발생으로 인해 그 대책이 시급한 실정이다. 최근에 수축을 저감할 수 있는 방법으로 내부양생에 대한 관심이 대두되고 있으며 연구가 활발히 이루어지고 있다. 본 연구에서는 고강도 및 하이볼륨 모르타르에 대해 인공경량골재(LWA)를 이용하여 내부양생 효과를 검증하고 여러 현장조건을 고려하여 양생조건(기중, 습윤, 수중)에 따른 압축강도 영향에 대한 연구를 수행하였다. 자기수축 실험을 통해 고강도 및 플라이애시를 혼입한 하이볼륨 모르타르에서 인공경량골재 혼입률이 증가할수록 수축저감 효과가 커지는 것을 확인하였다. 양생조건에 따라 압축강도 영향은 조금씩 다른 경향을 보이고 있으며, 기중 및 습윤 조건에서는 일반적으로 강도를 증가시키고 수중조건에서는 감소하는 것으로 나타났다.

건조수축 저감제를 혼입한 콘크리트의 Mock-up test (Mock-up Test on Concrete added Admixture for Reducing the Dry Shrinkage)

  • 박흥이;이종록;최명화;박희곤;송인명;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.773-776
    • /
    • 2008
  • 콘크리트구조물에서 균열을 제어한다는 것은 내구성능을 향상시킬 수 있는 기본적인 조건이 될 수 있기에 본 연구에서는 계면활성제로서 사용할 수 있는 글리콜 계열의 혼화제를 레디믹스트콘크리트에 혼입시켜 실물대 부재를 제작하고 장기재령에서의 건조수축에 대한 저항성을 확인하고 효과에 대한 원인으로서 미세조직의 밀실성을 분석하였다. 그 결과 실무대 부재에 있어 약 $-100{\sim}200{\times}10^{-6}$정도의 건조수축 저감 효과가 있으며, 모세관 공극부에서 기체나 액체의 이동을 저해할 수 있는 요인으로서 세공율이 약 $2.4{\sim}3.5$% 정도 감소됨으로써 건조수축에 의한 저항성을 확보할 수 있는 것으로 판단되었다.

  • PDF

폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구 (A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete)

  • 오병환;이명규;유성원;백상현
    • 콘크리트학회지
    • /
    • 제8권6호
    • /
    • pp.151-161
    • /
    • 1996
  • 토목 및 건축재료로써 폴리프로필렌 섬유보강 모르터 및 콘크리트의 사용은 미국, 영국 등지에서 개발되기 시작하여 많은 연구가 진행되어 왔는데, 경제적 이점, 화학적인 안정성과 우수한 내구성으로 인해 국내에서도 그 사용이 점차 증대되고 있는 실정이다. 이러한 폴리프로필렌 섬유의 사용은 모르터 및 콘크리트가 건조나 온도에 의해 수축될 때 , 구속에 의해 발행하는 인장응력 및 균열을 제어하고, 인성의 증가와 충격, 마모, 피로에 대한 저항성을 증대시키며, 콘크리트의 내구성을 증대시키는 등의 장점을 가지는 것으로 보고되고 있다. 본 연구에서는 이러한 폴리프로필렌 섬유보강 모르터 및 콘크리트의 재료적 특성인 유동성, 압축강도, 인장강도, 휨인성뿐만 아니라 균열제어특성, 건조수측특성을 실험을 통하여 규명하고자 하였다. 본 연구 결과. 폴리프로필렌섬유의 혼입으로 인성이 증가되고 건조수축균열 및 건조수축량이 제어되고 있는 것으로 나타났다. 본 연구는 앞으로 건조수축균열제어와 인성증가를 위한 폴리프로필렌 섬유보강 콘크리트의 활용 및 설계에 기초자료를 제시할 수 있을 것으로 사료된다.