• Title/Summary/Keyword: Shrinkage cracks

Search Result 182, Processing Time 0.03 seconds

Cracking Behavior of Concrete Bridge Deck Due to Differential Drying Shrinkage (교량 바닥판 콘크리트의 부등건조수축 균열특성에 관한 연구)

  • Yang, Joo Kyoung;Lee, Yun;Yang, Eun Ik;Park, Hae Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.329-335
    • /
    • 2009
  • The purpose of this study is to provide the efficient method and guideline of controlling the cracking in bridge deck concrete due to differential drying shrinkage. Drying shrinkage cracking is mainly influenced by the moisture diffusion coefficient that determines moisture diffusion rate inside concrete structures. In addition to the diffusion coefficient, surface coefficient of concrete surface and relative humidity of ambient air simultaneously affect the moisture evaporation from concrete inside to external air outside. Within the framework of cracking shrinkage cracking mechanism, it is necessary to conceive the numerical analysis, which involves these three influencing factors to predict and control the shrinkage cracking of concrete. In this study, moisture diffusion and stress analysis corresponding to drying shrinkage on bridge deck are performed with consideration of diffusion coefficient, surface coefficient, and relative humidity of ambient air. From the numerical results, it is found that cracking behavior due to differential drying shrinkage of bridge deck concrete shows different feature according to three influencing factors and the methodology of controlling of drying shrinkage cracks can be suggested from this study.

An Experimental Study on Carbonation in Cracked Concrete (균열부 콘크리트의 중성화에 대한 실험적 연구)

  • 권성준;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.655-660
    • /
    • 2002
  • Major deterioration in concrete structures are salt attack and carbonation. Especially severe problems due to carbonation occur in tile concrete structures of city, tunnel, underground structures. Cracks in concrete during service life including early age due to hydration heat and/or shrinkage accelerate the diffusion of concrete so that the deterioration is also accelerated. In this study, carbonation depths of both non-cracked concrete and cracked concrete are evaluated and weight change test and TGA are carried out. Through the tests, a relation between water-cement ratio and carbonation depth is derived and also carbonation increase rate is derived in the function of crack width.

  • PDF

An Experimental Study on the Flexural Strength of Construction Joints of RC Slabs at Widened Bridges (교량 확폭시 RC 상판 접합부의 휨강도에 관한 실험적 연구)

  • 배인환;심종성;장동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.188-193
    • /
    • 1993
  • In widening of existing bridges, construction joints between old new parts of concrete slabs are subjected to repeated traffic loads during placing and curing of concrete. Therefore, the main focus of this paper is given to examine several construction methods of bridge widening. As a result, the occurrence of cracks in vibrating specimen is faster than non-vibrating one, but the difference between flexural strength and ultimate moment was negligible. Also, it shows the same result in other construction method, say direct and non-shrinkage joint specimen.

  • PDF

Expansive Properties of Concrete with Variable Curing Condition Using Expansion Admixture (팽창재를 이용한 콘크리트의 양생환경에 따른 팽창특성)

  • 홍상희;김정진;강두용;류현기;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.143-146
    • /
    • 1999
  • This study is intended to investigate the properties of expansion of concrete under various curing environment with expansive additives. In construction field, expansive additives, which are anaiable to prevent from the diverse cracks caused by drying shrinkage are not expected to accomplish the expantion we expected because of both the absence of the know ledge change, loss of weight and dynamic of elasticty under various unit contents of expansive additives and curing condtion.

  • PDF

Retrofit Scheme against Crack Growth of ILM Bridge Superstructure in accordance with Each Construction Stage (시공단계별 ILM 교량상부의 균열성장에 대한 보강방안)

  • 이창수;김승익;김현겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1001-1006
    • /
    • 2000
  • These should be constructed partially, because many prestressed concrete box girder bridges in situ have large cross section and long span. Therefore, accurate prediction of differences, both elapse time of each construction stage and exposure of atmosphere at each position of cross section, is very important. Though it is importance, engineers are apt to overlook it. This study predicted cracks due to shrinkage and stress concentration phenomenon by each construction stage and then, ascertained reduction of tensile stresses after applying retrofit scheme.

Investigation of Shrinkage around Small Box of Short Span Slab (단경간 슬래브 중앙 소형박스(개구부)주변의 건조수축 거동 조사 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • There are small box opening for inserting of electric lamp box in the slab of apartment. Around this box opening, we normally use the detailing of WWF or plastic ring strengthening to protect cracks induced by shrinkage. The shrinkage amount of slab box around was measured and analysed in order to consider validity of these strengthening methods and to find out economical alternative. Alternative of strengthening methods are normally used strengthening methods in construction companies, which are WWF strengthening, plastic ring strengthening and no strengthening methods. The shrinkage amount was measured using contact guage at the spot of tip attached around the box on slab of small area unit apartment which have small exclusive area below $59m^2$. Measured data shows that there are no big differences between all the 3 strengthening methods and Measure data range is $-264{\mu}{\varepsilon}{\sim}+216{\mu}{\varepsilon}$. Measured shrinkage is on trend slightly increase till 3~5weeks after removal of forms and then decrease. But amount of shrinkage are very low for all the slabs and there are no probabilities of concrete crack by shrinkage.

Analysis of Axial Restrained Behavior of Early-Age Concrete Using Sea-Sand (해사를 사용한 초기재령 콘크리트의 일축 구속 거동 해석)

  • 박상순;송하원;조호진;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2002
  • In this paper, finite element analysis is applied for simulation of cracks due to restraining autogenous and drying shrinkage at early-age concrete. A micro-level heat hydration model and a shrinkage prediction model along with a moisture diffusion model are adopted for the finite element analysis. Then, an axial restraint test is carried out for concrete specimens containing different amounts of chloride ions to evaluate stress development and cracking due to the restraining shrinkages at early ages. Test results show that the increase of contents of chloride ions increases restrained stress, but does not increase strength. By this increase of shrinkage strain at early-age, time to occur the crack is accelerated. Finally, stress development and cracking of concrete specimens containing different amount of chloride ions we simulated using the finite element analysis. Results of the analysis using the Proposed model are verified by comparison with test results.

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.

A Study on the Chloride Migration Properties of High Durable Marine Concrete Using the Expansion Production Admixture (팽창재를 혼입한 고내구성 해양콘크리트의 염화물 확산특성에 관한 연구)

  • Kim, Kyoung-Min;Ryu, Dong-Woo;Park, Sang-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.697-700
    • /
    • 2008
  • Recently, high strength, flowability, and durability of concrete were required according to increase of large scale and high rise structure. However, cracks occurred easily on the high performance concrete. In this reason, using expansion agent for reducing shrinkage cracks were increased, but it did not consider on durability of high performance concrete. Accordingly, this study1 investigated the resistance of shrinkage and damage form salt by mixing CSA expansion agent on the blast-furnace slag cement and mixed cement for the low heat of hydration by three components. The cases that 8% of expansion agent was mixed and the proportion was OPC were expanded till 43.7 times compared with control concrete. For the resistance to the damage of salt, it was improved when mixing ratio was incresed and the maximum size of coarse aggregate growed bigger. In this study, the resistance to the damage of salt of the cases that 8% of expansion agent was mixed was improved about 16% compared with control concrete.

  • PDF