• Title/Summary/Keyword: Shrinkage Property

Search Result 229, Processing Time 0.028 seconds

Study on Manufacturing Technology of Coating Yarns for Awning Fabrics (차양막 직물용 코팅사 제조기술에 관한 연구)

  • Kim, Seung-Jin;Lee, Eun-Ho;Heo, Kyeung;Kim, Hyun-Ah
    • Textile Coloration and Finishing
    • /
    • v.27 no.1
    • /
    • pp.35-49
    • /
    • 2015
  • This paper investigated optimum process conditions of coating yarn for awning fabric. For this purpose, the simulation for processability and yarn quality using SPSS statistics package was carried out, and PP/TPO and PET/PVC coating yarns specimens were made with variation of extruder temperature and feed speed of core yarn on the yarn coating machine for examining simulation result. It was revealed that optimum coating conditions of PP/TPO 1000d coating yarn were extruder temperature $150^{\circ}C$, and core yarn feed speed 400~500m/min. Mechanical property and thermal shrinkage of PP/TPO coating yarn made at this conditions were best and core evenness rates of these coating yarns by yarn compression tester were also superior, which was certified by SEM photograph. In addition, these experimental results were coincided with simulation results. It was found that, in PET/PVC coating yarn, yarn physical properties between 1500d and 1200d coated yarns were not shown any difference, and core evenness rates of these coating yarns were superior. It revealed and concluded that these simulated coating conditions are applicable to production field.

Optimization of Processing Conditions and Mechanical Properties in Polymer Nanocomposite (고분자 나노복합재료의 가공조건 및 물성 최적화)

  • Nam, Byeong-Uk;Hong, Chae-Hwan;Hwang, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2007
  • Nanocomposites are used as a new class of polymer system and many researchers have been interested in the clay nanocomposite because of its good mechanical properties, heat resistance, flame retardancy, and barrier property. Modified layered silicates as fillers are dispersed at a nanometer-level within a polymer matrix and then new extraordinary properties are observed. In this study, polypropylene/clay nanocomposites were prepared in a twin screw extruder by the melt compounding method. In order to increase the compatibility of PP with the clay, the MAPP was used as a compatibilizer. And organic modified clays were used as a nanometric filler during the melt extrusion. Through the analysis of SAXS, WAXS, the dispersion of clay was investigated. These nanocomposites compared with a neat polypropylene/talc composite have high modulus, low toughness, and reduced shrinkage at the stable dispersion.

A Study on the Improvement of Property of Concrete using Copper Slag and Fly ash (동슬래그 및 플라이애쉬를 혼합하여 제작한 콘크리트의 성능 향상 연구)

  • Kim, Chun Ho;Lee, Won Goo;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Generally, when using copper slag mixed into the concrete, due to higher weight of copper slag, a reduction in the compressive strength and durability of the hardened concrete to increased bleeding is caused. In this study, hence copper slag, a kind of by-product was used as an alternative to the fine aggregate, it was carried out in combination with the use of fly ash in eliminating disadvantage and recycling aspects. As a result of this study, the mixing of fly ash is decreased in the 50% of bleeding, 5% of drying shrinkage, 30% of carbonation test and improvement of 10% of compressive strength than that of copper slag only at most.

Fabrication and Property Evaluation of Cu-Mn Compacts for Sputtering Target Application by a Pulsed Current Activated Sintering Method (펄스전류활성소결법을 이용한 스퍼터링 타겟용 Cu-Mn 소결체 제조 및 특성평가)

  • Jang, Jun-Ho;Oh, Ik-Hyun;Lim, Jae-Won;Park, Hyun-Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Cu-Mn compacts are fabricated by the pulsed current activated sintering method (PCAS) for sputtering target application. For fabricating the compacts, optimized sintering conditions such as the temperature, pulse ratio, pressure, and heating rate are controlled during the sintering process. The final sintering temperature and heating rate required to fabricate the target materials having high density are $700^{\circ}C$ and $80^{\circ}C/min$, respectively. The heating directly progresses up to $700^{\circ}C$ with a 3 min holding time. The sputtering target materials having high relative density of 100% are fabricated by employing a uniaxial pressure of 60 MPa and a sintering temperature of $700^{\circ}C$ without any significant change in the grain size. Also, the shrinkage displacement of the Cu-Mn target materials considerably increases with an increase in the pressure at sintering temperatures up to $700^{\circ}C$.

A study on deformation of LSR injection moldings having the runners with same flow distance (동일 유동거리 런너를 가진 LSR 성형품의 변형에 관한 연구)

  • Park, Jeong-Yeon;Yoon, Gil-Sang;Lee, Jeong-Won;Choi, Jong Myeong
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.60-63
    • /
    • 2013
  • Recently, Silicone that one of the thermo-sets is used to making optical products such as LED lenses because of excellent thermal properties. LED lenses are required to keep the precise dimensions, so they must be molded to have the minimum deformation. Thermo-sets have the expansion characteristic on the part of thermal property, it is important to optimize the cure condition so that the deformation of the part become minimum. In this study, to investigate the relationship between the shrinkage by the curing and expansion by the thermal properties of the resin, reactive injection experiment was performed by setting the variables such as mold setting temperature, cure time. As a result, it was confirmed that there was a interval while the thermal properties were transferred to more active during the cure process. It is expected to help in determining the reactive injection molding conditions of the thermo-set parts as well as LED lens in order to reduce the amount of deformation.

  • PDF

Development of Low Permeable Concrete for the Control of Deterioration in Underground Structures (지하구조물의 열화방지를 위한 수밀성 콘크리트의 개발)

  • Paik, S.H.;Park, S.S.;Park, J.Y.;Paik, W.J.;Um, T.S.;Choi, L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.191-196
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, is compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and its properties of low permeable concrete using fly ash are reviewed. From this study, fly ash concrete can conctrol the penetration of water and chloride ion effectively by forming dense microstructure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

A Study on Crack Self-Healing of Concrete Overlay for Bridge Decks (콘크리트 교면포장의 자기균열치유 특성에 대한 검토 연구)

  • Jeon, Sung IL;Yun, Kyung Ku;An, Ji Hwan;Choi, Pan Gil
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the property of self-healing, and to propose an appropriate duration for wet curing of bridge deck concrete overlays. METHODS : In this study, reinforced bars were inserted into concrete molds in order to prevent brittle fracture and induced cracks in the concrete resulting from indirect tension mode. The induced time of concrete cracking was 3 to 7 days, following which the concrete specimens were cured in water. The resulting concrete crack width was measured using image analysis equipment. Additionally, the self-healing tests were performed using the following three mixtures: OPC, SFC, and LMC. RESULTS : Concrete mixtures with crack widths of $150{\mu}m$ or lower were completely healed by Day 28. Hydrates of crack fills were found to be the calcium carbonate. CONCLUSIONS : The cement-based mixtures exhibit properties of self-healing. Considering these properties, it is necessary to increase the curing duration of concrete overlays for bridge decks.

Preparation of LaGaO3 Based Oxide Thin Film on Porous Ni-Fe Metal Substrate and its SOFC Application

  • Ju, Young-Wan;Matsumoto, Hiroshige;Ishihara, Tatsumi;Inagaki, Toru;Eto, Hiroyuki
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.796-801
    • /
    • 2008
  • $LaGaO_3$ thin film was prepared on Ni-Fe metal porous substrate by Pulsed Laser Deposition method. By the thermal reduction, the dense $NiO-{Fe_3}{O_4}$ substrate is changed to a porous Ni-Fe metal substrate. The volumetric shrinkage and porosity of the substrate are controlled by the reduction temperature. It was found that a thermal expansion property of the Ni-Fe porous metal substrate is almost the same with that of $LaGaO_3$ based oxide. $LaGaO_3$ based electrolyte films are prepared by the pulsed laser deposition (PLD) method. The film composition is sensitively affected by the deposition temperature. The obtained film is amorphous state after deposition. After post annealing at 1073K in air, the single phase of $LaGaO_3$ perovskite was obtained. Since the thermal expansion coefficient of the film is almost the same with that of LSGM film, the obtained metal support LSGM film cell shows the high tolerance against a thermal shock and after 6 min startup from room temperature, the cell shows the almost theoretical open circuit potential.

Watertightness and Crack Reduction Property of Concrete added Fluosilicate Salt Based Inorganic Compound for Watertight Concrete (수밀 콘크리트용 규불화염계 무기 조성물을 첨가한 콘크리트 수밀성 및 균열저감 특성)

  • Kim Da-Su;Khil Bae-Su;Choi Se-Jin;Park Min-Yong;Lee Seong-Yeon;Yeo Byung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.33-38
    • /
    • 2004
  • This study was performed to know watertightness and reduction effect and crack occurred by hydration heat, restraint of multiplication of hydration heat, through mechanical test, strength test and crack control test using fluosilicate salt based inorganic compound made from by-product during phosphoric acid manufacturing process. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.5-2.0\%$ of adding ratio of fluosilicate salt based inorganic compound. Evaluation for watertightness of concrete was carried out permeability, absorption test and porosity analysis. Effect of crack reduction was evaluated by length, drying shrinkage as well as stress change of hardened concrete at unrestraint/restraint state and also elucidated crack pattern on the concrete surface. It is ascertained that characteristics of crack resistance and watertightness for concrete was improved by an adequate addition of fluosilicate salt based inorganic compound.

  • PDF

Thermal Comfort and Tactile Wearing Performance of Wool/nylon Fabrics for Tra-biz Garment (울/나일론 tra-biz 의류용 직물 소재의 열적 쾌적성과 착용특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • In this study, wool/nylon(50/50%) blend yarn and its fabrics for tra-biz(complex word of travel+business) garment were prepared, and its wear comfort characteristics were investigated through thermal manikin and human-body wearing experiment. In addition, tactile wearing performance from fabric mechanical properties and the dimensional stability and the pilling of the fabric specimen during wearing and dry-cleaning were measured and compared with those of wool 100% fabric specimen. Heat keepability of the wool/nylon(50/50%) blend fabric by thermal manikin experiment was superior than that of wool 100% fabric, this result was verified with human-body wearing experiment and its result coincided well with this experimental result. Tactile wearing performance of the wool/nylon(50/50%) fabric from fabric mechanical properties measured by FAST system was better than that of the wool 100% fabric. The dimensional stability of the wool/nylon(50/50%) fabric was more stable than that of the wool 100% fabric. Because relaxation shrinkage was lower and hygral expansion of wool 100% fabric was more high. However, the breathability and pilling property of the wool/nylon(50/50%) fabric were inferior than those of the wool 100% fabric. The possibility of application for tra-biz garment of wool/nylon(50/50%) blend fabric was observed because of good heat keepability, tactile wearing performance and washing fastness.