• 제목/요약/키워드: Shrinkage Property

검색결과 229건 처리시간 0.026초

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.

팽창재 및 수축저감제가 초고성능 시멘트 모르타르의 수축특성에 미치는 영향 (Effect of Expanding Admixture and Shrinkage Reducing Agent on the Shrinkage Reducing Properties of Ultra High Performance Cement Mortar)

  • 한동엽;유명열;이현수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.61-64
    • /
    • 2006
  • Comparing with traditional high performance concrete, ultra high performance concrete (UHPC) has the property of high-tenacity. However, drying shrinkage and autogenous shrinkage can be arisen as the major defect to UHPC. In this study, therefore, it was tested to reduce drying shrinkage and autogeneous shrinkage by adding expanding admixture (EA) and shrinkage reducing agent (SRA). As a result, for a case drying shrinkage, the shrinkage was decreased by 94% when EA was exchanged, and it was decreased by 64% when SRA was added. For the case of autogenous shrinkage, the mortar was expanded at early age and the shrinkage was decreased by 87% when EA was exchanged, and the shrinkage was decreased by 70% when SRA was added.

  • PDF

내한촉진제를 사용한 고로시멘트 모르타르의 수축성상 (Shrinkage Properties of Blast Furnance Slag Cement Mortar by using Frost-Resistant Accelerator)

  • 최형길;이준철
    • 한국건축시공학회지
    • /
    • 제19권1호
    • /
    • pp.59-66
    • /
    • 2019
  • 고로시멘트와 내한촉진제를 병용한 모르타르의 수축특성 및 수축성상에 미치는 영향에 대해 검토했다. 그 결과, OPC, BB 모두 내한촉진제를 첨가함에 따라 굳지 않은 성상에 미치는 영향은 작고, 초기재령부터 압축강도는 커진다. 또한, 내한 촉진제를 표준 사용량 이상으로 다량 사용할 경우에는 초기재령에 있어서의 팽창거동, 특히 강도발현과 팽창성의 관계에 대해 검토할 필요가 있다. 한편, 내한촉진제를 첨가함으로써 OPC, BB 모두 길이변화는 증가하는 경향을 확인할 수 있었다. 내한촉진제를 첨가함에 따라 직경 30nm 이하의 세공량, 특히 직경 20~30nm의 세공량 및 ink-bottle 세공량이 감소하여 수축량은 커지게 되며, 이 범위의 세공량의 변화가 수축성상에 미치는 영향이 크다고 판단된다.

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

초기수화발열이 고강도콘크리트의 자기수축특성에 미치는 영향 (Effect of Hydration Heat Evolution on Autogenous Shrinkage of High Strength Concrete)

  • 정해문;도변박지;하야도륭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 2003
  • The shrinkage of high strength/high performance concrete is very important property for the good working of a structure since it very often generates early age cracking due to thermal and autogenous shrinkage. Autogenous shrinkage occurs as a result of internal moisture depletion due to hydration and temperature-induced effects. The level of autogenous shrinkage occurring due to hydration also depends on temperature history at very early age. It is necessary that effect of temperature on autogenous shrinkage is investigated since the stress generated due to autogenous shrinkage is quantified. In this study, Effect of hydration heat evolution on autogenous shrinkage of high strength concretes with W/C=25-40% was investigated.

  • PDF

PSC 박스거더 교량에 사용된 세그먼트 콘크리트의 크리프 및 건조수축에 관한 실험적 연구 (An Experimental Study on the Creep and Shrinkage for the Segment Concrete in PSC Box Girder Bridge)

  • 최한태;윤영수;이만섭
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.23-34
    • /
    • 1999
  • In designing PSC box girder bridge, the dead load, prestressing force, creep and shrinkage of concrete are the main factors which influence the camber and deflection of segmental concrete structure under construction. Among these factors the creep and shrinkage are the functions of the time-dependent property which, therefore, must considered with time. The prediction model for estimating creep and shrinkage of concrete has been suggested by ACI, CEB/FIP, JSCE and KSCE design code. In this study the creep and shrinkage test were carried out for four curing ages of concrete which was applied to the pretressed concrete box-girder bridge at a construction site, and the results of test were compared to the values of prediction by the design code. Shrinkage test shows that the test results are similar to KSCE-96 and JSCE-96 but very higher than other prediction model and creep test results are generally similar to ACI-209 and DSCE-96 but lower than other prediction models in contrast to shrinkage test.

Simulation of concrete shrinkage taking into account aggregate restraint

  • Tangtermsirikul, Somnuk;Nimityongskul, Pichai
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.105-113
    • /
    • 1997
  • This paper proposes a model for simulating concrete shrinkage taking into account aggregate restraint. In the model, concrete is regarded as a two-phase material based on shrinkage property. One is paste phase which undergoes shrinkage. Another is aggregate phase which is much more volumetrically stable. In the concrete, the aggregate phase is considered to restrain the paste shrinkage by particle interaction. Strain compatibility was derived under the assumption that there is no relative macroscopic displacement between both phases. Stresses on both phases were derived based on the shrinking stress of the paste phase and the resisting stress of the aggregate phase. Constitutive relation of paste phase was adopted from the study of Yomeyama, K. et al., and that of the aggregate phase was adopted from the author's particle contact density model. The equation for calculating concrete shrinkage considering aggregate restraint was derived from the equilibrium of the two phases. The concrete shrinkage was found to be affected by the free shrinkage of the paste phase, aggregate content and the stiffness of both phases. The model was then verified to be effective for simulating concrete shrinkage by comparing the predicted results with the autogeneous and drying shrinkage test results on mortar and concrete specimens.

CFRD 차부벽콘크리트의 수성수축균열 제어특성에 관한 실험적 연구 (An Experimental Study on the Control Property of PlasticShrinkage Crack for CFRD Face Slab Concrere)

  • 김완영;최세진;원종필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.118-121
    • /
    • 2000
  • CFRD (Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, hydration heat and bas compaction etc. Because of crack of concrete induce structural problem and decrease durability of concrete, it is need to reduce crack of concrete. This is an experimental study to analyze the Control Property of Plastic Shrinkage Crack for CFRD face slab concrete. For this purpose, it was investigated and analyzed the engineering properties of plain concrete and using admixtures (polypropylene fiber, fly-ash) according to test result As the result, it was found that crack width and area of concrete using admixtures less than of plain concrete.

  • PDF

기능성 폴리에스터 이중 편성물의 염색 특성 (Dyeing Properties of Functional PET Double Knit Fabric)

  • 이범훈
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.146-156
    • /
    • 2022
  • In this study, the dyeing properties of double knit fabric composed of PET/PTT bi-component fiber and quick dry fiber were examined with disperse dyes. In addition, the shrinkage characteristics were investigated during the dyeing process. The K/S values and shrinkage rate of PET/PTT bi-component fiber were higher than those of PET/co-PET bi-component fiber and quick dry fiber. In the dye bath, dye migration of exhausted on PET/PTT bi-component fiber to quick dry fiber was found at high dyeing temperature. It was not found that there was a significant difference in K/S value on dyeing temperature between 115℃ and 130℃. But the slight color difference of two sides of a double knit fabric was found.

초고강도 콘크리트의 자기수축 및 물리적 특성에 관한 기초적 연구 (A Basic Study on Autogenous Shrinkage and physical property of the Ultra-High-Strength Concrete)

  • 박현;윤기현;조승호;김광기;김우재;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.57-60
    • /
    • 2009
  • In ultra-high-strength concrete, autogenous shrinkage is larger than dry shrinkage due to the consume of a large amount of cement and cementitous material, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain for ultra-high-strength concrete. So, this paper have prepared super-high-strength concrete with specified mixing design strength of over 150MPa and have evaluated a method of reducing autogenous shrinkage by utilizing expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by autogenous shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher when the contents of the expander material were higher. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF