• 제목/요약/키워드: Shot Detection

검색결과 212건 처리시간 0.026초

Single-Shot LiDAR system을 이용한 Timing Jitter 분석 및 개선 방안 (Timing Jitter Analysis and Improvement Method using Single-Shot LiDAR system)

  • 한문현;최규동;송민협;서홍석;민봉기
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.172-175
    • /
    • 2016
  • 시간 정보를 이용하여 거리 측정 및 물체 탐지 등에 사용되고 있는 Time of Flight(ToF) LiDAR(Light Detection And Ranging) 기술이 자율 주행 자동차, 지형 분석 같이 보다 정밀 측정이 필요한 분야에 응용되면서 ToF 시간 정보 추출에 대한 중요성이 높아지고 있다. 본 논문에서는 ToF 시간 정보의 정확성의 지표로 timing jitter를 사용하였고, 약 31M free space 환경에서 1.5um 파장의 MOPA LASER와 InGaAs Avalanche Photodiode(APD)로 이루어진 Single-Shot LiDAR system(SSLs)을 통해 측정 및 분석하였다. 또한 SSLs를 통해 측정된 데이터에 curve fitting 방법인 spline interpolation과 반복 측정된 피크 데이터를 이용하는 multiple-shot averaging 방법을 적용하여 timing jitter 개선결과를 제시하였다.

  • PDF

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.

시각 율동을 이용한 샷 경계 검증 (Shot Boundary Verification using Visual Rhythm)

  • 김혁만;이진호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권3호
    • /
    • pp.201-209
    • /
    • 2000
  • 샷 경계 검출 알고리즘은 영상 제작시 사용된 컷, 와이프, 디졸브 등의 편집 효과로 인해 완벽한 결과를 기대하기 어렵다. 따라서 정확한 샷 경계를 얻기 위해서는 수작업에 의한 검증이 필요하다. 본고에서는 시각 율동을 이용한 샷 경계 검증 방법을 제시한다. 시각 율동은 영상의 내용 변화를 요약한 한 장의 이미지이다. 편집 효과는 수직선, 사선, 곡선, 점진적 색상의 변화 등 시각적으로 인지 가능한 형태로 시각 율동에 표현된다. 따라서 영상을 재생시키지 않고도 시각 율동의 변화만을 파악하여 샷 경계로 의심되는 부분들을 쉽고 빠르게 찾아낼 수 있다. 또한 이 특성을 이용한 샷 검증기를 구현하여 시각 율동의 유용성을 보인다.

  • PDF

하이브리드 클러스터링을 이용한 샷 전환 검출 (The Shot Change Detection Using a Hybrid Clustering)

  • 이지현;강오형;나도원;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.635-638
    • /
    • 2005
  • 비디오 분할은 비디오 질의 시스템을 만드는 첫 번째 단계로서 각 샷이 같은 내용을 가지는 프레임들의 순서를 표현하는 샷들에 대한 비디오 시퀀스 분할을 목적으로 한다. 샷 전환의 형태는 급진적인 샷 전환과 점진적인 샷 전환으로 구분된다. 샷 전환 검출 접근의 중요한 문제는 샷 전환 검출의 실행을 결정하는 정확한 경계값을 구체화하기 어렵다는 것이다. 또한 클러스터 접근에서는 클러스터의 올바를 수를 찾기가 어렵다. 이러한 문제점들을 개선하고자 컬러-X$^2$ 명도 히스토그램 기반 퍼지 c-means 클러스터링 방법을 이용하여 하이브리드 형태의 샷 전환 검출 방법을 제안 하였다.

  • PDF

애니메이션의 효과적인 장면경계 검출 알고리즘 (An Effective Detection Algorithm of Shot Boundaries in Animations)

  • 장석우;정명희
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3670-3676
    • /
    • 2011
  • 셀 애니메이션은 배경이 하나의 셀로 표현되고, 장면이 변화될 경우에는 배경이 변경되기 때문에 장면전환시 비교적 큰 변화가 일어난다. 그리고 실제로 카메라를 이용하여 촬영한 영상과는 달리 사람이 직접 그리다 보니 사용된 색상의 종류 또한 그렇게 많지 않다. 본 논문에서는 애니메이션의 이러한 특성을 최대한 반영하고 보다 효과적으로 셀 애니메이션의 장면전환을 검출하기 위해서 색상과 블록 단위의 히스토그램을 단계적으로 활용하는 새로운 애니메이션의 장면전환 검출 기법을 제안한다. 제안된 알고리즘은 연속적으로 입력되는 애니메이션 영상을 받아들인 후 먼저 칼라공간을 HSI 공간으로 변형하고, 두 영상 사이의 색상 값의 차연산을 수행하여 인접한 영상이 장면전환 후보인지를 1차적으로 판단한다. 만일, 인접한 영상이 장면전환 후보군으로 판단되면 부 영역별로 색상 히스토그램을 작성하고, 여기에 가중치를 적용하여 장면전환이 발생했는지의 유무를 최종적으로 판단한다. 본 논문의 실험에서는 제안된 애니메이션의 장면전환 검출 방법이 기존의 장면전환 검출 방법에 비해 보다 우수하다는 것을 보인다.

카메라의 동작을 보정한 장면전환 검출 (Shot Transition Detection by Compensating Camera Operations)

  • 장석우;최형일
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.403-412
    • /
    • 2005
  • 본 논문에서는 비디오 데이터로부터 장면 사이의 경계를 검출하고, 이들을 그 종류별로 분류하는 장면전환 검출 방법을 제안한다 제안한 장면전환 검출 방법은 급진적인 장면전환인 컷(cut)과 점진적인 장면전환인 페이드(fade) 및 디졸브(dissolve)를 검출한다. 본 논문에서는 영상 내에 포함된 카메라의 동작 정보를 이용하여 영상을 보정하고, 보정된 영상으로부터 특징을 추출하여 장면전환을 검출한다. 따라서 카메라의 동작으로 인해 기인하는 여러 가지 오 검출을 방지한다. 또한, 영상을 보정하는 과정에서 지역적인 이동 물체의 동작을 제거하므로 이동 물체의 동작으로 인해 기인하는 장면전환의 오 검출도 방지한다. 실험에서는 다양한 비디오 데이터를 입력 받아 기존의 장면전환 검출 방법들과 제안한 방법의 성능을 비교 분석함으로써 제안한 방법의 우수함을 보인다.

프레임 블록화와 객체의 이동을 이용한 샷 전환 탐지 알고리즘 (A shot change detection algorithm based on frame segmentation and object movement)

  • 김승현;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권5호
    • /
    • pp.21-29
    • /
    • 2015
  • 본 논문에서는 프레임 블록화와 이동블록 간 객체 이동을 이용한 샷 전환 탐지 알고리즘을 제안한다. 객체의 급격한 이동을 탐지하기 위해 연속 프레임의 현재 블록의 대각선상에 위치한 이동 블록을 정의하고 블록 히스토그램을 비교한다. 제안 방법은 두 연속 프레임 내 블록 간 객체 이동 여부를 검사하며, 객체 이동 블록 정보를 가지고 프레임 간 샷 전환 탐지를 예측한다. 현재 프레임의 블록이 다음 프레임의 이동 블록과 비교 시, 블록 히스토그램이 사용되며 샷 전환 임계값은 Otsu 임계값 방법을 이용하여 자동으로 선정한다. 제안 방법은 영화, 드라마, 애니메이션, 국가기록원 소장 영상 등과 같이 다양한 흑백 또는 칼라 영상에 대해 테스트되었다. 실험결과 제안하는 방법은 기존의 알고리즘과 비교 시 탐지율을 높일 수 있었다.

싱글숏 멀티박스 검출기에서 객체 검출을 위한 가속 회로 인지형 가지치기 기반 합성곱 신경망 기법 (Convolutional Neural Network Based on Accelerator-Aware Pruning for Object Detection in Single-Shot Multibox Detector)

  • Kang, Hyeong-Ju
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.141-144
    • /
    • 2020
  • Convolutional neural networks (CNNs) show high performance in computer vision tasks including object detection, but a lot of weight storage and computation is required. In this paper, a pruning scheme is applied to CNNs for object detection, which can remove much amount of weights with a negligible performance degradation. Contrary to the previous ones, the pruning scheme applied in this paper considers the base accelerator architecture. With the consideration, the pruned CNNs can be efficiently performed on an ASIC or FPGA accelerator. Even with the constrained pruning, the resulting CNN shows a negligible degradation of detection performance, less-than-1% point degradation of mAP on VOD0712 test set. With the proposed scheme, CNNs can be applied to objection dtection efficiently.

Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델 (Host-Based Intrusion Detection Model Using Few-Shot Learning)

  • 박대경;신동일;신동규;김상수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.271-278
    • /
    • 2021
  • 현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.

양극성 히스토그램 기법을 이용한 급격한 샷 전환점 검출 (Abrupt Shot Change Detection Using the Bi-polarity Histogram Method)

  • 권성은;홍승범;백중환;도규봉
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.259-262
    • /
    • 2002
  • We propose a new algorithm to detect shot change, which is necessary in retrieval of video data. In order to solve the problems of abrupt brightness change and similar brightness between frames in the typical shot change methods, we propose the hi-polarity histogram method which takes into account the distribution and magnitude of brightness changes in consecutive frames. We evaluate our algorithm with compressed and uncompressed video data and demonstrate its improved performance.

  • PDF