• 제목/요약/키워드: Shot Detection

검색결과 212건 처리시간 0.025초

샷 경계 탐지 알고리즘의 병렬 설계와 구현 (Parallel Design and Implementation of Shot Boundary Detection Algorithm)

  • 이준구;김승현;유병문;황두성
    • 전자공학회논문지
    • /
    • 제51권2호
    • /
    • pp.76-84
    • /
    • 2014
  • 최근 고화질 영상의 증가와 더불어 대용량 영상 데이터의 처리는 높은 연산이 요구되어 병렬 처리 설계가 선택되고 있다. 영상 처리에서 나타나는 많은 단순 연산이 병렬처리 가능한 경우, CPU 기반 병렬처리보다는 GPU 기반 병렬처리를 적용하는 것이 계산문제의 시간과 공간 계산 복잡도를 줄일 수 있다. 본 논문은 영상에서 샷 경계 탐지 알고리즘의 병렬 설계와 구현을 연구하였다. 제안하는 샷 경계 탐지 알고리즘은 프레임 간 지역 화소 밝기 비교와 전역 히스토그램 정보를 이용하는데, 이들 데이터의 계산은 대량의 데이터에 대한 높은 병렬성을 갖는다. 이들 연산의 병렬처리를 최대화하기 위해 화소 밝기와 히스토그램의 계산을 NVIDIA GPU에서 병렬 설계 하였다. GPU 기반 샷 탐지 방법은 국가기록원에서 선택된 10개의 비디오 데이터에 대한 성능 테스트를 수행하였다. 테스트에서 GPU 기반 알고리즘의 탐지율은 CPU 기반 알고리즘과 유사하였으나 약 10배의 연산 속도가 개선되었다.

인터넷에 기반한 내용기반 검색 시스템 설계 (Content-Based Retrieval System Design over the Internet)

  • 김영호;강대성
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.471-475
    • /
    • 2005
  • Recently, development of digital technology is occupying a large part of multimedia information like character, voice, image, video, etc. Research about video indexing and retrieval progresses especially in research relative to video. This paper proposes the novel notation in order to retrieve MPEG video in the international standards of moving picture encoding For realizing the retrieval-system, we detect DCT DC coefficient, and then we obtain shot to apply MVC(Mean Value Comparative) notation to image constructed DC coefficient. We choose the key frame for start-frame of a shot, and we have the codebook index generating it using feature of DC image and applying PCA(principal Component Analysis) to the key frame. Also, we realize the retrieval-system through similarity after indexing. We could reduce error detection due to distinguish shot from conventional shot detection algorithm. In the mean time, speed of indexing is faster by PCA due to perform it in the compressed domain, and it has an advantage which is to generate codebook due to use statistical features. Finally, we could realize efficient retrieval-system using MVC and PCA to shot detection and indexing which is important step of retrieval-system, and we using retrieval-system over the internet.

압축 영상에서 히스토그램 인터섹션을 이용한 점진적인 장면 전환의 구간 검출 (Detection of Gradual Shot Conversion Duration using Histogram Intersection in Compressed Video)

  • 권철현;한두진;이명호;박상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권11호
    • /
    • pp.669-672
    • /
    • 2005
  • An algorithm detecting abrupt and gradual shot boundaries is proposed in this Paper. The conventional methods detect abrupt shot boundaries well, but do not show good performance on gradual shot boundaries. The proposed method Is based on the fact that the difference of the characteristic between frames is large when the shot conversion occurs. And the Proposed method detects abrupt and gradual shot boundaries with one algorithm. Moreover, it detects not only position where gradual shot conversion occurs, but also the exact duration where gradual shot conversion occurs.

레이저 애벌레이션 분광을 이용한 고분자 표면의 나노미터 스케일 표면 분석 (Nanometer-Scale Surface Analysis of Polymers Using Laser Ablation Spectroscopy)

  • 김민규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1334-1336
    • /
    • 2001
  • In this study, laser ablation atomic fluorescence (LAAF) spectroscopy has been applied for a nanometer-scale surface analysis of Na-doped polymethyl methacrylate (PMMA). LAAF spectroscopy is a new sensitive element detection technique which involves atomizing of a sample by the laser ablation and detection of ablated plume by laser-induced fluorescence (LIF) spectroscopy. Using this technique in the detection of Na atoms with Na-doped PMMA, a detection limit is obtained as 36 fg for single laser shot. Further, the depth distribution in the sample is measured with a very high spatial resolution using a two-layer PMMA sample by observing the shot-by-shot LIF intensity from the Na atoms.

  • PDF

강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법 (Robust Feature Selection and Shot Change Detection Method Using the Neural Networks)

  • 홍승범;홍교영
    • 한국멀티미디어학회논문지
    • /
    • 제7권7호
    • /
    • pp.877-885
    • /
    • 2004
  • 본 논문은 여러 가지 장면 검출 방식들 중 강인한 특징 변수들의 선별과 신경망을 이용하여 향상된 장면 전환점 검출 기법을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임 간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임 간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 단일 특징보다는 상호 보완 관계를 갖는 강인한 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 본 논문에서 강인한 특징 변수들을 선택하기 위해, 데이터 마이닝 기법 중 대표적인 CART(classification and regression tree)를 이용하고, 다차원 변수에 따른 임계값을 선정하기 위해 역전파 신경망(backpropagation neural net)을 이용한다. 제안한 방식과 대표적인 특징 추출인 PCA(principal component analysis)기법을 비교하여 특징 변수의 추출 성능을 평가한다. 실험 결과에 따라 제안된 방식이 PCA 기법과 비교하여 우수한 성능이 나타남을 확인한다.

  • PDF

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.

대용량 비디오 데이터베이스 구축을 위하여 장면전환 검출과 샷 클러스터링을 이용한 비디오 개요 추출 (Video Abstracting Using Scene Change Detection and Shot Clustering for Construction of Efficient Video Database)

  • 신성윤;표성배
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.111-119
    • /
    • 2006
  • 본 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\chi2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.

  • PDF

화소 밝기와 객체 이동을 이용한 비디오 샷 경계 탐지 알고리즘 (Shot Boundary Detection Algorithm by Compensating Pixel Brightness and Object Movement)

  • 이준구;한기선;유병문;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권5호
    • /
    • pp.35-42
    • /
    • 2013
  • 비디오 데이터를 효율적으로 검색, 정렬, 탐색, 분류하기 위해서는 프레임 간의 샷 전환 탐지가 선행되어야 한다. 프레임 간 화소 밝기와 객체 이동은 높은 탐지율을 보장하는 샷 탐지 알고리즘이 극복해야할 문제이다. 본 논문에서는 프레임의 블록화 및 객체의 이동과 프레임의 밝기를 고려하는 샷 탐지 방법을 제안한다. 먼저 연속하는 두 프레임 사이에서 발생할 수 있는 객체의 이동을 고려하여 계산된 히스토그램과 밝기 차이를 반영하는 모폴러지 팽창 연산을 이용하는 알고리즘을 제안한다. 다음으로 화소 밝기 차를 보상한 프레임 블록의 화소정보와 프레임의 전역적인 밝기 히스토그램의 변화를 함께 이용하는 샷 탐지 방법을 제안한다. 제안된 방법들은 국가기록원 소장 비디오 데이터에 대한 실험에서 화소 또는 히스토그램 기반 알고리즘에 비해 높은 샷 탐지율을 보였다.

STB 품질검사를 위한 개선된 지역 방향 패턴 기반 비디오 샷 경계 검출 및 자동 동기화 (Enhanced Local Directional Pattern based video shot boundary detection and automatic synchronization for STB quality inspection)

  • 조영탁;채옥삼
    • 융합정보논문지
    • /
    • 제9권3호
    • /
    • pp.8-15
    • /
    • 2019
  • 최근 STB 보급이 증가하면서 제품 출하 전 품질검사의 중요성이 부각되고 있다. 본 논문에서는 STB 영상 신호의 다채널 동시 입력을 통한 품질검사 자동화를 지원하기 위한 방법을 제안한다. 제안 방법은 먼저 색상 정보와 LDP 코드를 결합한 CeLDP를 이용하여 안정적인 비디오 샷 경계 검출 후 영상의 중앙 스캔라인을 이용한 핑거프린트를 추출하여 입력 비디오 채널 간 동기화를 수행한다. 제안하는 방법은 기존 샷 검출 방법과 비교를 통해 더욱 강인한 샷 경계 검출 성능을 보이는 것을 확인하였으며, 실제 환경에 적용한 실험을 통해 STB 품질검사 시 필요한 다채널 입력 간 동기화를 위한 신뢰성 확보 및 실시간 품질검사가 가능함을 입증하였다. 또, 제안된 방법을 바탕으로 향후 대규모 품질검사 방법을 연구하여 보다 효과적인 품질검사 체계를 제안하고자 한다.

퍼지 추론에 의한 비디오 데이터의 샷 경계 추출 (Shot Boundary Detection of Video Data Based on Fuzzy Inference)

  • 장석우
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.611-618
    • /
    • 2003
  • 본 논문에서는 퍼지 추론 방법을 이용하여 비디오 데이터에서 샷(shot)의 경계를 검출하는 방법을 제안한다. 제안된 방법에서는 컷(cut), 페이드(fade), 디졸브(dissolve)와 같은 샷의 경계들을 검출하고, 이들을 그 종류별로 분류하기 위해 기본적으로 퍼지 연상 기억장치를 확장한 퍼지 추론 방법을 이용한다. 본 논문에서는 연속적인 두 영상 사이의 차이를 나타내는 여러 특징들을 입력 퍼지 집합으로 사용하고, 샷 경계들을 출력 퍼지 집합으로 사용한다. 본 논문의 퍼지 추론 시스템은 크게 학습 단계와 추론 단계의 두 단계로 구성된다. 학습 단계에서는 퍼지 소속 함수의 결정을 통해 시스템의 기본 구조를 초기화하고 이를 바탕으로 퍼지 연상 기억장치의 학습 기능을 이용하여 퍼지 규칙을 조건부와 결론부를 연결하는 가중치의 형태로 생성한다. 그리고 추론 단계에서는 구성된 퍼지 추론 모델을 이용하여 실제 추론을 수행한다. 실험에서는 제안된 샷 경계 검출 방법의 성능을 확인하기 위해서 뉴스, 영화, 광고, 다큐멘터리, 뮤직 비디오 등의 비디오 데이터들을 활용하였다.