• Title/Summary/Keyword: Shortest Path Problem

Search Result 242, Processing Time 0.026 seconds

Optimization of Transportation Problem in Dynamic Logistics Network

  • Chung, Ji-Bok;Choi, Byung-Cheon
    • Journal of Distribution Science
    • /
    • v.14 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • Purpose - Finding an optimal path is an essential component for the design and operation of smart transportation or logistics network. Many applications in navigation system assume that travel time of each link is fixed and same. However, in practice, the travel time of each link changes over time. In this paper, we introduce a new transportation problem to find a latest departing time and delivery path between the two nodes, while not violating the appointed time at the destination node. Research design, data, and methodology - To solve the problem, we suggest a mathematical model based on network optimization theory and a backward search method to find an optimal solution. Results - First, we introduce a dynamic transportation problem which is different with traditional shortest path or minimum cost path. Second, we propose an algorithm solution based on backward search to solve the problem in a large-sized network. Conclusions - We proposed a new transportation problem which is different with traditional shortest path or minimum cost path. We analyzed the problem under the conditions that travel time is changing, and proposed an algorithm to solve them. Extending our models for visiting two or more destinations is one of the further research topics.

Clock period optimaization by gate sizing and path sensitization (게미트 사이징과 감작 경로를 이용한 클럭 주기 최적화 기법)

  • 김주호
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In the circuit model that outputs are latched and input vectors are successively applied at inputs, the gate resizing approach to reduce the delay of the critical pathe may not improve the performance. Since the clock period is etermined by delays of both long and short paths in combinational circuits, the performance (clock period) can be optimized by decreasing the delay of the longest path, or increasing the delay of the shortest path. In order to achieve the desired clock period of a circuit, gates lying in sensitizable long and short paths can be selected for resizing. However, the gate selection in path sensitization approach is a difficult problem due to the fact that resizing a gate in shortest path may change the longest sensitizable path and viceversa. For feasible settings of the clock period, new algorithms and corresponding gate selection methods for resizing are proposed in this paper. Our new gate selection methods prevent the delay of the longest path from increasing while resizing a gate in the shortest path and prevent the delay of the shortest path from decreasing while resizing a gate in the longest sensitizable path. As a result, each resizing step is guaranteed not to increase the clock period. Our algorithmsare teted on ISCAS85 benchmark circuits and experimental results show that the clock period can beoptimized efficiently with out gate selection methods.

  • PDF

A Study of route choice of the intelligent guidance system (지능형 유도시스템의 경로선택에 관한 연구)

  • Fang, Chun-Ri;Lee, Sang-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1311-1318
    • /
    • 2008
  • This study aims at proposing a method to guide people to the most efficient route in an emergency through addressing the limitations of the existing research and providing a solution. Most of the existing intelligent guidance system tend to guide people to the shortest-distance path to the exit. A problem lies to the fact that the shortest-distance path doest not gurantee the most efficient way of evacuation. Rather than taking the shortest-distance path, this research proposes a way of taking the shortest-time path by introducing a real time loop sensor.

GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network

  • Park, Hae-Woong;Won, Soo-Seob;Kim, So-Jung;Song, Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1529-1532
    • /
    • 2004
  • A Mobile Ad Hoc NETwork (MANET) is a collection of wireless mobile nodes that forms a temporary network without the need for any existing network infrastructure or centralized administration. Therefore, such a network is designed to operate in a highly dynamic environment due to node mobility. In mobile ad hoc network, frequent topological changes cause routing a challenging problem and without the complete view of the network topology, establishing the shortest path from the source node to the destination node is difficult. In this paper, we suggest a routing approach which utilizes location information to setup the shortest possible path between the source node and the destination node. Location information is obtained through Global Positioning System (GPS) and this geographical coordinate information of the destination node is used by the source node and intermediate nodes receiving route request messages to determine the shortest path to the destination from current node.

  • PDF

A NEW METHOD FOR SOLVING FUZZY SHORTEST PATH PROBLEMS

  • Kumar, Amit;Kaur, Manjot
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.571-591
    • /
    • 2012
  • To the best of our knowledge, there is no method, in the literature, to find the fuzzy optimal solution of fully fuzzy shortest path (FFSP) problems i.e., shortest path (SP) problems in which all the parameters are represented by fuzzy numbers. In this paper, a new method is proposed to find the fuzzy optimal solution of FFSP problems. Kumar and Kaur [Methods for solving unbalanced fuzzy transportation problems, Operational Research-An International Journal, 2010 (DOI 10.1007/s 12351-010-0101-3)] proposed a new method with new representation, named as JMD representation, of trapezoidal fuzzy numbers for solving fully fuzzy transportation problems and shown that it is better to solve fully fuzzy transportation problems by using proposed method with JMD representation as compare to proposed method with the existing representation. On the same direction in this paper a new method is proposed to find the solution of FFSP problems and it is shown that it is also better to solve FFSP problems with JMD representation as compare to existing representation. To show the advantages of proposed method with this representation over proposed method with other existing representations. A FFSP problem solved by using proposed method with JMD representation as well as proposed method with other existing representations and the obtained results are compared.

A New Link-Based Single Tree Building Algorithm for Shortest Path Searching in an Urban Road Transportation Network

  • Suhng, Byung Munn;Lee, Wangheon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.889-898
    • /
    • 2013
  • The shortest-path searching algorithm must not only find a global solution to the destination, but also solve a turn penalty problem (TPP) in an urban road transportation network (URTN). Although the Dijkstra algorithm (DA) as a representative node-based algorithm secures a global solution to the shortest path search (SPS) in the URTN by visiting all the possible paths to the destination, the DA does not solve the TPP and the slow execution speed problem (SEP) because it must search for the temporary minimum cost node. Potts and Oliver solved the TPP by modifying the visiting unit from a node to the link type of a tree-building algorithm like the DA. The Multi Tree Building Algorithm (MTBA), classified as a representative Link Based Algorithm (LBA), does not extricate the SEP because the MTBA must search many of the origin and destination links as well as the candidate links in order to find the SPS. In this paper, we propose a new Link-Based Single Tree Building Algorithm in order to reduce the SEP of the MTBA by applying the breaking rule to the LBA and also prove its usefulness by comparing the proposed with other algorithms such as the node-based DA and the link-based MTBA for the error rates and execution speeds.

Distributed Optimal Path Generation Based on Delayed Routing in Smart Camera Networks

  • Zhang, Yaying;Lu, Wangyan;Sun, Yuanhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3100-3116
    • /
    • 2016
  • With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.

SHORTEST PATH FOR ROBOT CAR

  • Kim, Che-Soong;Ree, Sang-Bok
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.140-150
    • /
    • 1992
  • In this paper, we consider the shortest path problem of a Robot car moving in a workspace which consists of some obstacles. The motion of the Robot car is considered to have initial and final directions with some restrictions in the curvature of the path. At first we consider the problem in the case of having no obstacles and we give an analytical solution. Then wre present an algorithm to find a feasible path in the case of having obstacles and a method to improve this feasible path into a minimal path. Some computational results using Graph theory and Linear programming have been included.

  • PDF

Minimum Energy Cooperative Path Routing in All-Wireless Networks: NP-Completeness and Heuristic Algorithms

  • Li, Fulu;Wu, Kui;Lippman, Andrew
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.204-212
    • /
    • 2008
  • We study the routing problem in all-wireless networks based on cooperative transmissions. We model the minimum-energy cooperative path (MECP) problem and prove that this problem is NP-complete. We hence design an approximation algorithm called cooperative shortest path (CSP) algorithm that uses Dijkstra's algorithm as the basic building block and utilizes cooperative transmissions in the relaxation procedure. Compared with traditional non-cooperative shortest path algorithms, the CSP algorithm can achieve a higher energy saving and better balanced energy consumption among network nodes, especially when the network is in large scale. The nice features lead to a unique, scalable routing scheme that changes the high network density from the curse of congestion to the blessing of cooperative transmissions.

Efficient Implementations of a Delay-Constrained Least-Cost Multicast Algorithm

  • Feng, Gang;Makki, Kia;Pissinou, Niki
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.246-255
    • /
    • 2002
  • Constrained minimum Steiner tree (CMST) problem is a key issue in multicast routing with quality of service (QoS) support. Bounded shortest path algorithm (BSMA) has been recognized as one of the best algorithms for the CMST problem due to its excellent cost performance. This algorithm starts with a minimumdelay tree, and then iteratively uses a -shortest-path (KSP) algorithm to search for a better path to replace a “superedge” in the existing tree, and consequently reduces the cost of the tree. The major drawback of BSMA is its high time complexity because of the use of the KSP algorithm. For this reason, we investigate in this paper the possibility of more efficient implementations of BSMA by using different methods to locate the target path for replacing a superedge. Our experimental results indicate that our methods can significantly reduce the time complexity of BSMA without deteriorating the cost performance.