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Efficient Implementations of a Delay-Constrained
Least-Cost Multicast Algorithm

Gang Feng, Kia Makki, and Niki Pissinou

Abstract: Constrained minimum Steiner tree (CMST) problem is a
key issue in multicast routing with quality of service (QoS) support.
Bounded shortest path algorithm (BSMA) has been recognized as
one of the best algorithms for the CMST problem due to its ex-
cellent cost performance. This algorithm starts with a minimum-
delay tree, and then iteratively uses a k-shortest-path (KSP) algo-
rithm to search for a better path to replace a “superedge” in the
existing tree, and consequently reduces the cost of the tree. The
major drawback of BSMA is its high time complexity because of
the use of the KSP algorithm. For this reason, we investigate in this
paper the possibility of more efficient implementations of BSMA
by using different methods to locate the target path for replacing
a superedge. Our experimental results indicate that our methods
can significantly reduce the time complexity of BSMA without de-
teriorating the cost performance.

Index Terms: Multicast routing, constrained minimum Steiner tree
problem, QoS routing, constrained unicast routing.

L INTRODUCTION

Multicast routing allows a source to send information to mul-
tiple destinations concurrently [1]. It has attracted a lot of atten-
tion in the last few years [2]-[4] due to the emergence of many
new applications such as video conferencing, tele-education,
and interactive multimedia game, etc., in which multicast rout-
ing protocols play a critical role. The major advantage of mul-
ticast routing lies in its capability of saving network resources
since only one copy of message needs to be transmitted over a
link shared by paths leading to different destinations.

Multicasting routing generally consists of three major tasks:
(1) set up a tree that spans the source and all destinations, (2)
reserve network resources such as bandwidth, buffer, and rout-
ing table so that information can be forwarded to all destinations
along the paths specified by the multicast tree, and (3) dynami-
cally manage the tree as members leave or join the multicasting
group.

So far a number of multicast routing protocols have been pro-
posed. In terms of how the initial multicast tree is established,
they can be classified into two categories, centralized and dis-
tributed [1]. A centralized multicast protocol [5] assumes that
the source node has the state information of the entire network
and thus the multicast tree can be computed within the source
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node. To do this, a link-state protocol such as OSPF [6] is as-
sumed to be available to provide the state information. In con-
trast, a distributed multicast routing protocol [7] requires other
nodes to share the responsibility for computing the multicast
tree, and generally a distance vector protocol [8] is employed
to provide necessary routing information. While most people
believe that distributed routing protocols are more robust than
their centralized counterparts, we should also notice that as the
underlying protocols for providing routing information, link-
state protocols are more reliable and have better scalability than
distance-vector protocols [9].

Initial research on multicast routing mainly focused on the
problem of finding a minimum Steiner tree (MST) [3]. Since
the MST problem is NP-complete [10], major efforts were
dedicated to developing efficient heuristics that can produce a
low-cost tree in reasonable time complexity [11]. The proto-
cols based on these heuristics cannot provide additional quality
of service (QoS) guarantees such as constrained delay and/or
delay-jitter, and thus are called QoS-oblivious protocols [12]. In
recent years, however, due to the fact that newly emerging multi-
media applications have very strict QoS requirements, research
interests have shifted to develop QoS-sensitive protocols [12]
and a lot of work has been published. Nonetheless, a number of
related issues still need further explorations.

For the above reason, we restrict our attention in this paper to
the problem of finding a delay-constrained minimum-cost mul-
ticast tree, assuming that the source has the global state infor-
mation provided by a link-state routing protocol. This particular
problem, known as constrained minimum Steiner tree (CMST)
problem, is NP-complete [10] and has been extensively stud-
ied in the literature [3]. Of all the previously proposed heuris-
tics for the CSMT problem, the bounded shortest path algorithm
(BSMA) proposed by Zhu et al. [4], [5] had the most profound
influence on latter works. It has been demonstrated by com-
puter simulation that on average BSMA can determine a con-
strained multicast tree with a very low cost [3}, [4], [7], and
{13]. There is no other heuristic currently available that can out-
perform BSMA in terms of the average cost of the resulting tree,
and it has been frequently used as a criterion to measure the
performance of other heuristics [7], [13]. The disadvantage of
BSMA, however, is its high time complexity. It is probably the
most time consuming one among all heuristics that have been
proposed [3], [7], and [13].

A critical step in BSMA is to find a delay-constrained least-
cost (DCLC) path. In the original implementation of BSMA,
this is done by using a loopless k-shortest-path (KSP) algorithm
[14] to enumerate the shortest paths in the order of increasing
cost, and pick up the first path that satisfies all delay constraints.
Since the value of k needs to be very large in order to achieve a
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(b) The topology after replacing a superedge

Fig. 1. lllustration of multicast tree and replacement of superedge.

good cost performance, this step may take a lot of computation
time. On the other hand, we have seen many efficient exact
and approximate algorithms for the DCLC problem published
in recent years [15]-[17]. It is very likely that these algorithms
can be used in BSMA to reduce its time consumption. For this
reason, we explore alternative implementations of BSMA in this
paper based on two recently proposed algorithms for the DCLC
problem, and investigate the impact of such implementations on
the resulting cost and time performance.

The remainder of this paper is organized as follows. The
CMST problem is formally defined in Section II. Then, we
briefly describe the heuristic BSMA in Section III. In Section
IV, we suggest two alternative implementations of BSMA. Sec-
tion V gives a review on some closely related work. In Section
VI, the performance of the alternative implementations is inves-
tigated through extensive simulation, and Section VII concludes
this paper.

II. NOTATION AND PROBLEM DEFINITION

A network is represented by a directed graph G(V, E), where
V is the set of nodes, and E is the set of links.

A weight w defines a number w(e) € Ry associated with
each link e, 1e., w : E — Rﬂ,’ . In particular, weight d : £ —
Ry is called delay, while ¢ : E — R{ is called cost.

A path is a finite sequence of non-repeated nodes p =
(vo,v1, -, uk), such that, for 0 < i < k, there exists a link
from v; t0 vy 1, i.e., (vi,v,41) € E. Alink e € p means that
path p passes through link e. The delay and the cost of a path
p are thus given by d(p) = Y. d(e) and c(p) = 3 ¢, c(e),
respectively.

Given a multicast tree 7 spanning a source s and a set of
destinations D, let p7(s,v) denote the path on T from s to des-
tination v € D. The cost of the multicast tree T' is defined by
o(T) = ¥ .ercle). The set of destinations D is also called a
multicast group with each destination being a group member.

Definition 1: [CMST Problem] Given a source s, a set of
destinations D, a delay upper bound A, for destination v € D,
the CMST problem needs to find a tree T' spanning DU {s} such
that ¢(T') is minimized subject to d(pr(s,v)) < Ay, Vv € D.

The following two definitions are necessary to describe the
alternative implementations of BSMA.

Definition 2: [DCLC Problem] Given a source, a destina-
tion, and a delay upper bound D, the DCLC problem needs to
find a path p from the source to the destination such that c(p)is
minimized subject to d(p) < D.

Definition 3: [DCC Problem] Given a source, a destination,
a delay upper bound D, and a cost upper bound C, the delay-
cost-constrained (DCC) problem needs to find a path p from the
source to the destination such that d(p) < D, and ¢(p) < C.

II. HEURISTIC BSMA

Heuristic BSMA [4] solves the CMST problem by starting
with a feasible solution and then gradually improving the solu-
tion. Tt includes two basic steps: (1) construct a minimum-delay
tree, and (2) iteratively reduce the cost of the tree with the delay
constraints always being satisfied.

The minimum-delay tree is constructed using Dijkstra’s short-
est path algorithm [18]. In case that the delay upper bound for
a destination is so tight that even the least-delay (LD) path from
source s to the destination cannot satisfy it, the QoS require-
ments have to be renegotiated. Once an initial feasible solution
is obtained, however, the BSMA iteratively improves the solu-
tion by finding better paths to replace superedges on the current
tree. A superedge is defined as a path on the tree such that if
all edges and internal nodes of the path are taken out the tree
becomes exactly two subtrees. For instance, in the tree shown
in Fig. 1(a), only the following paths are superedges: s — =z,
x> u T >y 22— v adz > w In order for a
new path to be qualified to substitute a superedge, it must have
a cost no more than the cost of the original superedge, and after
the substitution we must still have a tree structure with the delay
constraints being satisfied.

Fig. 2 is a high-level description of BSMA describing more
clearly how the heuristic originally proposed in [4] works. Af-
ter finding the minimum-delay tree, all superedges are identified
and unmarked. The heuristic then enters an iterative procedure.
At a particular iteration, the unmarked superedge with the high-



248 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.. 4, NO. 3, SEPTEMBER. 2002

Heuristic BSMA(G, s, D, A}
Input:
G(V, E): graph
s: source; D: set of destinations
A set of delay upper bounds for destinations
QOutput:
a delay-constrained tree spanning D U {s}
i F=0
2 T; + minimum-delay tree
3 unmark all superedges of T}
4 loop{
5 py, < the highest-cost unmarked superedge
6 if (p;,=NULL) then return 7}
7 mark superedge pj,
8 Obtain le and Tj2 by removing p;, from 7}
9 p, < delay-constrained least-cost path between le and T]?
10 Tjy1 T} Up,UT?
i if p, # p;, then
12 unmark all superedges
13 j=3+1
14 }

Fig. 2. High-level description of heuristic BSMA.

est cost, denoted by p,, is taken out from the current tree, and
thus we obtain two subtrees. A certain algorithm is further em-
ployed to identify the DCLC path, denoted by p,, between the
two subtrees. Here the DCLC path is defined as the least cost
(LC) path satisfying all delay constraints. In case that p, and
p;, are different, all superedges of the new tree are identified and
unmarked. The heuristic stops when all superedges are marked.

As mentioned earlier in Section I, the DCLC path between
two subtrees p, is found using a KSP algorithm. To do that,
two additional nodes are introduced, one connected to all nodes
in one subtree and the other connected to all nodes in the other
subtree, with all new connections having zero cost. The KSP
algorithm is then employed to enumerate the paths between the
two nodes in the order of increasing cost, and p, is the first path
that satisfies all delay constraints.

The BSMA described in Fig. 2, however, works well only if
the network has symmetric link costs. Otherwise, the total cost
of the tree may increase after replacing p, with p,. This point
can be illustrated in Fig. 1(b). Consider the initial multicast tree
in Fig. 1(a). Suppose at certain iteration, p,, isz — y — 2,
and the DCLC path p, between the two subtrees after removing
Py is © = a — v. Then, the new tree topology is shown in
Fig. 1(b). Even though p, may have a smaller cost than p,, the
new tree may still have a higher total cost than the previous one
if the cost of path u - @ — v — =z is greater than the cost
of path z — y — 2z — wv. The reason behind this is because
the two links v — z and z — v may have different costs in a
directed graph.

Obviously, the above problem can be resolved by checking if
the total cost of the tree will increase or not before deciding to
make a replacement, but this may further complicate the imple-
mentation and increase the time complexity. For this reason, we
make a slight modification on BSMA in our following imple-
mentations. Suppose le is the subtree that contains the multi-
cast source s after removing p,, at iteration j, and ¢ is the end
node of p; on T].Q. Our modification is to let p, be the DCLC
path between subtree le and node ¢ instead of the DCLC path
between the two subtrees. The rest of the heuristic is kept the

same. Obviously, BSMA with such modification can avoid the
problem mentioned in the previous paragraph. The DCLC path
between le and node ¢ can be found in a way similar to the one
for finding the path between two subtrees except that now only
one additional node is needed to connect all nodes on le.

For the purpose of consistency, throughout this paper we will
refer the original implementation of BSMA to the one that uses
a KSP algorithm to find the DCLC path between 77} and node
t by enumerating the shortest paths in the order of increasing
cost. Unless otherwise stated, le will be the subtree that con-
tains the source s after removing a superedge, Tf will be the
other subtree, and node ¢ will be the end node of the superedge
onT7.

IV. ALTERNATIVE IMPLEMENTATIONS OF BSMA

A. Motivation

The original BSMA uses a KSP algorithm to locate the DCLC
path, requiring a total time complexity of O(k|V|3log|V]). In
order to find such a path, the value of £ could be extremely large,
as also mentioned in [S]. The authors of [5] claim that the time
complexity can be controlled by taking & as an input parameter,
and by setting k to a smaller value we can trade off the cost per-
formance against a lower time complexity. However, for a par-
ticular distribution of link weights and delay upper bounds we
never know what value & should take so that the time consump-
tion is acceptable. Even if the time complexity is controlled to a
satisfactory level, we may doubt that maybe a simpler heuristic
can achieve the same cost performance in even less time.

In view of this, one may immediately agree that the best
method to solve the conflict between the cost performance and
the time complexity is to use a faster algorithm to find the DCL.C
path. We may not require such an algorithm to be an exact al-
gorithm that can always find the optimal path. Instead, as long
as it can find the optimal path with a very high probability in a
relatively low time complexity, we may expect that the modified
version of BSMA based on such algorithm may achieve a very
satisfactory performance in both cost and time.

Around a decade ago, the work on the DCLC problem was
very limited. This was probably one of the reasons for the orig-
inal implementation of BSMA. In the past few years, however,
there has been a significant advance in research on finding least-
cost path subject to one or more constraints [16], [19]. In the fol-
lowing two subsections, we will briefly review two algorithms
for the DCLC problem and furthermore describe how these al-
gorithms can be incorporated into BSMA to find the DCLC path
between subtree T} and node ¢.

B. Exact Algorithm E_DCLC for the DCLC Problem

DCLC problem is NP-complete [10]. Therefore, any exact
algorithm for this problem may be very time consuming when
the network size becomes relatively large. However, there do
exist several exact algorithms that have proven practically ef-
ficient when the network is of moderate size, e.g., the con-
strained Bellman-Ford (CBF) algorithm proposed in [17]. Here
we describe another exact algorithm E_DCLC, which is based
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EDCLC(G(V,E), Src, Dst, ¢,d, D)
p + least delay path
if (d(p) > D) then

return NULL
q + least cost path
if (c(p) = c(q)) then

return p

D-d

compute w{e) = d(e) + ac{e) for each link ¢
set DCLCmaz = D4ac(p)
10 loop{
11 r «the current shortest path w.r.t. w found by a KSP algorithm
12 if (r = NULL) then

L=l RN e R R N

13 return p /* no more path */

14  if(w(r) >DCLCyqa.) then

15 return p /* p is the optimal solution */
16 if (¢(r) < ¢(p) and d(r) < D) then

17 p«r

18 update DCLCpppz

19

Fig. 3. Exact algorithm E_DCLC for the DCLC problem.

on a KSP algorithm. Our previous computer simulation demon-
strates that on average, E_LDCLC takes less time than CBF if the
KSP algorithm is implemented through sophisticated data struc-
ture [20].

E_DCLC is closely related to one of our recent works. In [21],
we proposed an exact algorithm E_MCOP to find the least cost
path subject to multiple constraints. The basic idea of E MCOP
is to first construct an aggregate weight w by linearly combin-
ing all the weights, and then use a KSP algorithm to check the
shortest paths w.r.t. w one at a time to find the optimal solution.

E_DCLC is a special case of E_ MCOP because for the DCL.C
problem there are only two link weights, delay d, and cost c.
Therefore, we only need one parameter « to form the aggregate
weight w(e) = d(e) + ac(e),VYe € E. Once we have the ag-
gregate weight for each link, a KSP algorithm can be similarly
used to search for the optimal solution.

A more precise description of E_.DCLC is shown in Fig. 3.
Assuming that we need to find the DCLC path from source Src
to destination Dst with a delay upper bound of D, the algorithm
starts by checking the feasibility of the delay constraint. If even
the least delay (LD) path p has a delay greater than 2, we can-
not find a feasible path at all. Otherwise, the algorithm finds the
least cost (LC) path q. In the case that g and p have the same
cost, p must be the optimal solution. If p is neither infeasi-
ble nor optimal, the algorithm computes the value of parameter
a, the aggregate weight w(e) for each link e, and a quantity
DCLC,4;- A KSP algorithm is then employed to check the
shortest paths w.r.t. w one at a time. If there is no more path
available, or the aggregate weight of the current shortest path r
exceeds DC LCp, 4., we can conclude that p is the optimal path,
and the algorithm stops. On the other hand, if r is a feasible path
with a lower cost than that of p, we let r replace p and update
DCLCrqy.-

Two issues need to be clarified. First, the value of « is given
by

_ D—-dp)
e(p) — c(a)’

where p and q are the LD and LC paths, respectively. The
reason for setting o to this value is because it guarantees that

NRDCLC(G(V, E), Sre, Dst, d, ¢, D)
q « least cost path
if (d(q) < D) then
return g
p + least delay path
if (d(p) > D) then
return NULL
if (¢(p) # c(q)) then
set C =c¢(p) — ¢
repeat
0 r + HDCC(G(V, E), Sre, Dst,d, ¢, D,C)
/*solved as a DCC problem */
11 if (r # NULL) then
12 p«r
13 setC =c(p) — ¢
14 until r = NULL
15 return p

—_— T~ ON R W =

Fig. 4. Approximate algorithm NR_DCLC for the DCLC problem.

the smallest number of infeasible paths will be checked before
the algorithm terminates. Due to space limit, please see [21]
for more details. Second, at a particular iteration, if w(r) >
DCLC 4z, we can conclude that p is the optimal path. This is
because if d(r) + ac(r) > D+ac(p), then either r is an infea-
sible path or r has a higher cost than p. This also applies to any
subsequent shortest path since it must have an aggregate weight
no less than w(r).

C. Approximate Algorithm NR_DCLC for the DCLC Problem

NR_DCLC is an approximate algorithm for the DCLC prob-
lem proposed in [22]. As an approximate algorithm, it may not
be able to find a feasible (or optimal) solution even if there exists
one or more feasible solutions. However, computer simulation
demonstrates that this algorithm can obtain a feasible solution
with a very high probability [19], and moreover in most cases
the obtained solutions are optimal [22]. The time complexity
of this algorithm is very low. It only needs to run Dijkstra’s al-
gorithm 5 or 6 times on average and a maximum number of 20
times even when the network size is relatively large [22].

A high-level description of this algorithm is shown in Fig. 4.
Like E_DCLC, NR_DCLC also starts by checking the LC path
and the LD path. If the LC path is a feasible path, then it is
also the optimal solution. If the LD path is not feasible, then
no feasible path is available. If none of the above conditions is
true, the algorithm enters a loop to search for the best solution.
The searching procedure is done by first converting the DCLC
problem to a DCC problem and then using a procedure H.DCC
to search for a better solution by gradually tightening the cost
upper bound.

As shown in Fig. 4, we assume the delay and the cost upper
bounds of the DCC problem are denoted by D and C, respec-
tively (D is also the delay upper bound of the original DCLC
problem). Initially, C is given by ¢(p) — €, where € is a small
positive number. If H.DCC finds a feasible solution r to the
DCC problem, r must satisfy both the delay and the cost con-
straints. This means that r is a feasible solution to the original
DCLC problem and it has a lower cost than p. By replacing
p with r and updating the cost upper bound, the algorithm can
continuously search for better solutions until no feasible path is
returned by H.DCC.
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source node

destination node

tree edge

(a) Network with an additional node

(b) The topology after an illegal replacement

Fig. 5. Hustration of iliegal replacement of superedge.

H.DCC uses a nonlinear Lagrange relaxation iechnique io
search for a feasible solution to the DCC problem. It runs Di-
jkstra’s algorithm (with modifications) no more than two times.
Computer simulation indicates that its success ratio of finding
a feasible solution is very high if such a path exists. For more
details, please see [19], [22].

D. Implementation of BSMA based on E.DCLC or NR_.DCLC

Recall that in BSMA we need to find a DCLC path between
subtree le and an end node £ of a superedge. At first glance, one
may think E_.DCLC or NR DCLC can be straightforwardly used
to find such a path. However, the DCLC path in BSMA, after
joining the two subtrees, must satisfy multiple delay constraints
set by different destinations. For instance, in order for a path
1 — a — z to be qualified to replace the superedge z — y — 2
in Fig. 1(a), it must meet two delay constraints, i.e., the delay of
path s — u — a — z — v must be no greater than A, and the
delay of path s —+ « — o — 2 — w must be no greater than
A, In contrast, algorithms E_DCLC and NR_DCLC assume
that a deterministic delay upper bound is known for a given pair
of source and destination.

For the above reason, before we can use E.DCLC or
NR.DCLC to find a candidate path to replace a given superedge,
we need to determine three arguments: Source Src, destination
Dst, and the delay upper bound D. D should take a value such
that all multicast delay constraints must be satisfied for any path
between Src and Dst with a delay no more than D to be used to
replace the superedge. We choose Src and Dst the same way as
in the original implementation described in Section 111, namely,
let Src be the additional node connected to all nodes on subtree
le, and Dst be the end node ¢ of the superedge on subtree sz.
The connection between the additional node and a node z on le
should have a cost of zero and a delay equal to the delay of the
path on T} from the raulticast source s to x. The upper bound
D should be computed as follows:

D = min {Av —d (ijz (t, v)) |V group member v on Tf} ,

where { is the end node of the superedge on TJ?, Prz(t,v) is the
path on 77 from node ¢ to node .

There is another issue we need to take care of before running
E_DCLC or NR.DCLC. If the DCLC path is obtained using one
of the two algorithms without considering this issue, the result-
ing topology may not be a tree structure. Let us still use the tree
shown in Fig. 1(a) to illustrate this point. Again, suppose we
need to find a DCLC path to replace superedge z — y — =.
After connecting the additional node to subtree Tj‘, the network
is shown in Fig. 5(a). It is possible that the DCLC path returned
by EDCLC or NRDCLCis 8¢ - 8 - u = a — 2. If
we use this path to connect the two subtrees, the resulting topol-
ogy would be the one show in Fig. 5(b), which is not a tree. To
avoid this problem, we must ensure that the returned DCLC path
crosses exactly one node on the two subtrees (obviously, the sec-
ond node of the returned path must be a node on T]-l). This can
be done by trimming all incoming links of the nodes on le, ex-
cept the link from the additional node, and all incoming links
of the nodes on T7, except the end node ¢ of the superedge.
The purpose of trimming links is to find the DCLC path. They
should be recovered after running E_DCLC or NR_DCLC.

V. RELATED WORK

In this Section, we give a brief review on prior work on delay-
constrained multicast and unicast routing.

As one of the earliest works on CMST problem, Kompella et
al. proposed a heuristic in [23], which is called KPP by later re-
searchers and in which the link delay and delay upper bound
are assumed to be integers. The time complexity of KPP is
O{A|V]?), where A is delay upper bound for all destinations.

In [17], Widyono proposed four heuristics based on a con-
strained Bellman-Ford (CBF) algorithm, which is an exact al-
garithm for the DCLC problem. Among the four heuristics, the
constrained adaptive ordering (CAQO) was proved to have excel-
lent performance. The basic idea of CAQO is to use CBF to find
a DCLC path between a partial tree and each of the destinations
that have not yet been added to the tree, and the destination that
requires the minimal additional cost is chosen to add fo the par-
tial tree. This procedure is repeated until all destinations are
included in the tree.

In [3], Salama e al. made a performance comparison between
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Fig. 6. Performance comparison with four destinations.

several heuristics including BSMA, CAO, KPP, etc. Compari-
son results indicated that BSMA on average can achieve a mul-
ticast tree with the lowest cost, but takes much more time than
other heuristics. CAO has the second best cost performance and
requires less computation time than BSMA and KPP for net-
works with 100 nodes or less.

In {24], Hong et al. proposed a heuristic very similar to CAO
except that an approximate algorithm BG [25] was used to find
the DCLC path. Statistical data indicate that this heuristic is
very efficient in both time and cost performance, but unfortu-
nately the authors did not compare it with other heuristics in
their paper. Nevertheless, since CAO uses an exact algorithm
to find the DCLC path, we believe that CAO should have better
cost performance.

In [13], Matta et al. proposed a heuristic QDMA, which has
very low time complexity. On average it is about 50 times faster
than CAO and 500 times faster than BSMA. The cost of the
resulting multicast tree is about 10% worse than that of BSMA.

There are many other heuristics for the CMST problems, but
previous research results [3] demonstrate that they either have
worse cost performance or need more computation time than
certain heuristic mentioned above.

Since in this paper algorithms for the DCLC problem play a

critical role in our alternative implementations of BSMA, we
also briefly review the current status in this area. In recent
years, both exact algorithms and heuristics have been proposed
to solve the DCLC problem. Probably E_DCLC described in
this paper (and its generalization E MCOP in [21]) and CBF
mentioned earlier are the most efficient two exact algorithms
currently available for the DCLC problem. In the following we
give a brief review on previously proposed approximate algo-
rithms.

The earliest work for the DCLC problem probably should be
accredited to Hassin’s two e-optimal approximation algorithms
[26] which can produce solutions with their costs less than 1 + ¢
times the cost of the optimal solution. These two algorithms,
albeit very efficient in finding feasible solutions, have very high
time complexities [19].

In [16], Jiittner et al. proposed a heuristic algorithm based on
linear Lagrange relaxation technique. Its basic idea is to first
construct an aggregate weight by linearly combining delay and
cost, and then use Dijkstra’s algorithm to find the corresponding
shortest path. This heuristic is in essence the same as the ap-
proximate algorithm DCLC-IA-II proposed in [15] and the BG
in [25], and it is renamed as LR_DCLC in [22].

In [22], Feng et al. compared the performance of heuristics
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Fig. 7. Performance comparison with eight destinations.

NR_DCLC and LR.DCLC. Simulation results demonstrate that
both heuristics have excellent performance. They can find opti-
mal solutions with very high probability in very low time com-
plexity. In comparison, NR_DCLC on average can find a solu-

tion with a lower cost but needs slightly more computation time
than LR_DCLC.

V1. PERFORMANCE EVALUATION

In this Section, we investigate the performance of the BSMA,
based on three types of implementations: The original imple-
mentation, and the two alternative implementations based on
EDCLC and NRDCLC, respectively. The two alternative
implementations will be denoted by “BSMA+E_DCLC” and
“BSMA+NR_DCLC,” respectively, in the following figures. In
view of the performance comparison results in {3], CAO is also
tested as a reference.

Two types of network topologies are used to test these heuris-
tics. The topologies used in Figs. 6-8 are generated using Wax-
man’s method, which has been used extensively in previous
works, while the topologies used in Fig. 9 are generated based
on the Tansit-Stub model proposed by Zegura et al. [27]. Wax-
man’s method is used here for the purpose of making a fair com-
parison with previous works, while Zegura’s method is used in

order to test the performance of these heuristics in real com-
munication networks. This is because Tansit-Stub model has
proved to be able to more accurately characterize real Internet
topologies.

With Waxman’s method, all nodes are first randomly dis-
tributed in a square, and links between nodes u and v are gener-
ated with probability

P(u,v) = Bexp (

where d(u,v) is the Manhattan distance between nodes u and
v, and L is the maximum possible distance between any two
nodes. In our simulation, four types of networks with nodes of
50, 100, 150, and 200 are generated, and parameters («, 3) for
the four types of network are (0.4,0.3), (0.2,0.3), (0.2,0.25),
and (0.2, 0.2), respectively. After a network topology is gener-
ated, we let link delay be the physical distance between the two
end nodes, and link cost equal the link delay times a random
number in (0, 1].

For a given size of a network with a specified number of group
members, we generated 100 network topologies, for which 100
sources and the corresponding multicast groups are randomly
generated. For a given source and its multicast group, we as-
sume all destinations have the same delay upper bound given
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Fig. 8. Performance comparison for 100-node networks with different numbers of destinations.

by
max {d(p(s,))|v € D},

where p(s, v) is the LD path from source s to destination v.

For each multicast routing request, heuristics BSMA,
BSMA+E_DCLC, BSMA+NR_DCLC, and CAQ are used inde-
pendently to find a multicast tree. Based on the results returned
by each heuristic, two performance measures with 95% confi-
dence intervals are computed. The first performance measure
is the average computation time for solving a single CMST in-
stance. The second is called average cost deviation from the
original BSMA. For a given CMST problem, the cost deviation
of heuristic A is defined by

c(Ta) — c(Tpsma)
c(Tpsma)

x 100%,

where ¢ (T'4) is the cost of the tree returned by heuristic A, and
¢(Tpsaa) is the cost of the tree returned by BSMA with orig-
inal implementation.

For BSMA and BSMA+E_DCLC, an additional performance
measure, i.e., average number of paths checked by the KSP for a
single CMST instance, is also computed. In addition, to ensure
that the simulation can be finished in reasonable time, BSMA,
and BSMA+E_DCLC are only allowed to check up to 200 of the

shortest paths for replacing a superedge. All simulations were
run on a Dell Pentium IV computer.

Fig. 6 shows the performance measures when the num-
ber of destinations is four. From Fig. 6(a) we may see that
BSMA+E_DCLC requires much less computation time than the
original BSMA, and even requires less time than CAO. In com-
parison with BSMA+E _DCLC, BSMA+NR_DCLC can further
reduce the execution time. Fig. 6(b) shows the average num-
ber of paths checked by the KSP algorithm. We can see that on
average BSMA+E_DCLC needs to check much smaller num-
ber of paths than the original BSMA. This is also the reason
why BSMA+E_DCLC is more computationally effective. Fur-
thermore, with the 200-path limit, in certain cases, the orig-
inal BSMA may not be able to find the optimal path, while
BSMA+E_DCLC can. Therefore, on average, BSMA+E_DCLC
may achieve better cost performance than BSMA. This is
demonstrated in Fig. 6(c), which shows that in most cases the
average cost deviation of BSMA+E DCLC is less than zero.
From our previous definition of the cost deviation, we know
this means that on average, BSMA+E_DCLC can find a mul-
ticast tree with lower cost than BSMA. In addition, we should
notice that on average, BSMA+NR_DCLC can also find so-
lutions better than BSMA, even though slightly worse than
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Fig. 9. Performance comparison for 100-node Transit-Stub topologies with different numbers of destinations.

BSMA+E_DCLC. The reason that the average cost deviation of
BSMA+E_DCLC or BSMA+NR_DCLC decreases with the in-
crease of network size is because for larger networks the limit of
200 paths has a more severe impact on the cost of the solution
of BSMA.

Fig. 7 shows the performance measures when the number of
destinations is eight. Comparing Figs. 7 and 6, we may see that
for the two cases (4 vs. 8 destinations) the performance mea-
sures are very similar, except that all heuristics need more com-
putation time when the number of destinations increases.

Fig. 8 shows the performance measures for 100-node net-
works with different numbers of destinations. Figs. 8(a) and
8 (b) are easy to understand since more destinations require
more computation time, as mentioned earlier. Fig. 8(c) shows
that the average cost deviation of CAO becomes higher and
higher with the increase of destinations, and we notice that
this complies with the results in previous works [3]. On the
other hand, BSMA+E_DCLC and BSMA+NR_DCLC have al-
most fixed cost deviations relative to BSMA. This is because
BSMA, BSMA+E_DCLC and BSMA+NR_DCILC use the same
basic idea to find the multicast tree. Their only difference lies in
the way of finding the DCLC path, and the impact of this differ-
ence cannot be reflected unless we change the network size or

the upper limit of the total number of paths to be checked.

Fig. 9 also shows the performance measures for 100-node net-
works with different numbers of destinations. However, the
topologies used in this case are generated using the Transit-
Stub model [27], as mentioned earlier in this section. The link
weights, and the delay upper bound are generated using the same
method as the one described earlier. Since the topologies gener-
ated in this case are always symmetric, and the number of links
is much less than the one in our previous experiments, we no-
tice that the time consumption is much less compared with the
case where topologies are generated using Waxman’s method.
This can be illustrated by comparing Fig. 8(a) and Fig. 9(a).
On the other hand, it should also be noted in Fig. 9(a) that the
two alternative implementations still take much less time than
the original implementation. From Fig. 9(c), we can see that
even though the solutions obtained by the alternative implemen-
tations have slightly higher cost than those given by the original
BSMA, their difference is very small (less than 1%).

From these results, we may conclude that the advantage
of BSMA+E_DCLC or BSMA+NR_DCLC over the original
BSMA is unquestionable. They also considerably outperform
CAO in both time and cost performance. It should be noted that
previous works have already demonstrated that CAO can out-
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perform KPP.

VII. CONCLUSION

We have demonstrated in this paper that the proposed alter-
native implementations of BSMA can very efficiently solve the
constrained minimum Steiner tree problem. They not only sig-
nificantly reduce the computation time, but also obtain solutions
with lower costs in case there is an upper limit on the number
of paths that can be checked by a KSP algorithm. Compared
with some other heuristics, our implementations also have obvi-
ous advantages. We even believe that they are very competitive
when compared with many other heuristics if we take into ac-
count both the cost performance and the time complexity.
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