Skeletal muscle fatigue is defined as a 'any reduction in the maximal capacity to generate force or power output', and is the reduction of oxygen consumption and by-product of metabolism. For the muscle fatigue therapy, low level laser has been introduced that leads the mitochondrial respiratory and attributes the muscle fatigue recovery. This study analyzed the muscle fatigue signals from electromyography(EMG) during low-level laser therapy (LLLT). Healthy subjects performed voluntary elbow flexion-extension excercise and received placebo LLLT and active LLLT using a 830 nm laser diode. Then, EMG were measured for the evaluation of muscle fatigue. The acquired EMG data were analyzed with median frequency and short time fourier transform methods. The results showed that the LLLT had a significant symptomatic relief of muscle fatigue based on the EMG frequency analysis. Therefore, the muscle fatigue analysis with EMG signals can be applied to quantitative evaluation for the monitoring of LLLT effects.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.23
no.7
/
pp.848-851
/
2012
As many radar systems are simultaneously operated with overlapping frequency bands, interference between systems inevitably occurs. Because interference can degrade radar performance, suppression of interference is a critical issue in radar systems. In this letter, a new interference detection and suppression method using a short-time Fourier transform and an adaptive notch filter is proposed. An experiment is carried out to validate the proposed method and the results demonstrate that the proposed method is suitable for application in real FMCW radars.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.5
/
pp.899-905
/
2012
Level Gauge using FMCW Radar is widely used and researched in many areas because of contactless, long range and flexibility. However FMCW level gauge requires wideband RF bandwidth for archiving high resolution of cm grade. In this paper we propose a new tx sawtooth waveform and processing algorithm with narrowband RF for wideband performance. The proposed method is based on STFT(Short-time fourier transform) and single sinusoidal carrier estimation method. From some experiments, we show that the resolution is improved upto 8 times with 300MHz FMCW radar.
Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.
Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
International Journal of Precision Engineering and Manufacturing
/
v.6
no.4
/
pp.26-30
/
2005
A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.
Seunghyun Hwang;Jinwook Lee;Hyeon-Joon Kim;Jongyun Byun;Changhyun Jun
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.209-209
/
2023
본 연구에서는 강우 시 발생하는 음향 및 진동 신호를 기반으로 강우강도를 산정하기 위한 방법론을 제안하였다. 먼저, Raspberry Pi, 콘덴서 마이크 및 가속도 센서로 구성된 관측 기기로부터 실제 비가 내리는 환경에서의 음향 및 진동 신호를 수집하였다. 가속도 센서로부터 계측된 진동 신호를 활용하여 강우 유무에 대한 이진 분류를 수행하고, 강우가 발생한 것으로 판단된 기간에 해당하는 음향 신호에 Short-Time Fourier Transform 기술을 적용하여 주파수 영역에서 나타나는 magnitude의 평균과 표준 편차, 최고 주파수 등의 특징을 기반으로 강우강도를 산정하였다. 이를 위해 앙상블 기반의 머신러닝 학습 모델인 XGBoost 알고리즘을 사용하였으며, 광학 우적계를 통해 관측한 강우강도와 산정 결과를 비교·평가하였다. 강우강도 산정 과정에서 사용된 음향 신호의 길이를 1초, 10초, 1분으로 구분하였으며, 무강우 기간 내 음향 정보로부터 배경 음향에 의한 노이즈를 제거하고자 하였다. 최종적으로 강우 유무 이진 분류 과정의 선행 여부, 음향 신호의 길이 및 노이즈 제거 방법에 따른 강우강도 산정 결과들에 대한 성능 비교를 통해 본 연구에서 제안하고자 하는 방법론의 실효성을 평가하였다.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.5
/
pp.217-223
/
2023
In this paper, we propose a new model for the conditional generation of music, considering key and rhythm, fundamental elements of music. MIDI sheet music is converted into a WAV format, which is then transformed into a Mel Spectrogram using the Short-Time Fourier Transform (STFT). Using this information, key and rhythm details are classified by passing through two Convolutional Neural Networks (CNNs), and this information is again fed into the Music Transformer. The key and rhythm details are combined by differentially multiplying the weights and the embedding vectors of the MIDI events. Several experiments are conducted, including a process for determining the optimal weights. This research represents a new effort to integrate essential elements into music generation and explains the detailed structure and operating principles of the model, verifying its effects and potentials through experiments. In this study, the accuracy for rhythm classification reached 94.7%, the accuracy for key classification reached 92.1%, and the Negative Likelihood based on the weights of the embedding vector resulted in 3.01.
Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.7
/
pp.1575-1581
/
2003
As a society has progressed rapidly toward a highly advanced digital information age, a multimedia communication service for acquisition, transmission and storage of image data as well as voice has being commercialized externally and internally. However, in the process of digitalization or transmission of data, noise is generated by several causes, and researches for eliminating those noises have been continued until now. There were the existing FFT(fast fourier transform) and STFT(short time fourier transform) for removing noise but it's impossible to know information about time and time-frequency localization capabilities has conflictive relationship. Therefore, for overcoming these limits, wavelet transform which is presented as a new technique of signal processing field is being applied in many fields recently. Because it has time-frequency localization capabilities it's Possible for multiresolution analysis as well as easy to analyze various signal. And when two wavelet base were designed to form Hilbert transform pair, wavelet pair provide superior performance than the existing DWT(discrete wavelet transform) in data characteristic detection. Therefore in this parer, we removed impulse noise by using adaptive-length median filter and two dyadic wavelet base which is designed by truncated coefficient vector.
This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.
In this study the complex-valued continuous wavelet transform (CWT) has been applied in detection of Electrocardiograms (ECG) as response to various signal classification methods such as Fourier transforms and other tools of time frequency analysis. Experiments have shown that CWT may serve as a detector of non-stationary signal changes as ECG. The tested signal is corrupted by short time events. We applied CWT to detect short-time event and the result image representation of the signal has showed us that one can easily find the discontinuity at the time scale representation. Analysis of ECG signal using complex-valued continuous wavelet transform is the first step to detect possible changes and alternans. In the second step, modulus and phase must be thoroughly examined. Thus, short time events in the ECG signal, and other important characteristic points such as frequency overlapping, wave onsets/offsets extrema and discontinuities even inflection points are found to be detectable. We have proved that the complex-valued CWT can be used as a powerful detector in ECG signal analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.