• Title/Summary/Keyword: Short-term Power Forecasting

Search Result 122, Processing Time 0.029 seconds

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • Koh, H.S.;Lee, C.S.;Choy, J.K.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.292-294
    • /
    • 2000
  • This paper is presented the method peak load forecast based on multiple regression Model. Forecasting model was composed with the temperature-humidity and the discomfort index. Also the week periodicity was excluded from weekday change coefficient of two types. Forecasting result was good with about 3[%]. And, utility of presented forecast model using statistical tests has been proved. Therefore, This results establish appropriateness and fitness of forecast models using peak power demand forecasting.

  • PDF

A Study on Development of a Forecasting Model of Wind Power Generation for Walryong Site (월령단지 풍력발전 예보모형 개발에 관한 연구)

  • Kim, Hyun-Goo;Lee, Yeong-Seup;Jang, Mun-Seok;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a forecasting model of wind speed at Walryong Site, Jeju Island is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model is constructed based on neural network and is trained with wind speed data observed at Cosan Weather Station located near by Walryong Site. Due to short period of measurements at Walryong Site for training statistical model Gosan Weather Station's long-term data are substituted and then transplanted to Walryong Site by using Measure-Correlate-Predict technique. One to three-hour advance forecasting of wind speed show good agreements with the monitoring data of Walryong site with the correlation factors 0.96 and 0.88, respectively.

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF

Development of Electric Load Forecasting System Using Neural Network (신경회로망을 이용한 단기전력부하 예측용 시스템 개발)

  • Kim, H.S.;Mun, K.J.;Hwang, G.H.;Park, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1522-1522
    • /
    • 1999
  • This paper proposes the methods of short-term load forecasting using Kohonen neural networks and back-propagation neural networks. Historical load data is divided into 5 patterns for the each seasonal data using Kohonen neural networks and using these results, load forecasting neural network is used for next day hourly load forecasting. Normal days and holidays are forecasted. For load forecasting in summer, max-, and min-temperature data are included in neural networks for a better forecasting accuracy. To show the possibility of the proposed method, it was tested with hourly load data of Korea Electric Power Corporation. (1993-1997)

  • PDF

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.

Short-term demand forecasting method at both direction power exchange which uses a data mining (데이터 마이닝을 이용한 양방향 전력거래상의 단기수요예측기법)

  • Kim Hyoung Joong;Lee Jong Soo;Shin Myong Chul;Choi Sang Yeoul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.722-724
    • /
    • 2004
  • Demand estimates in electric power systems have traditionally consisted of time-series analyses over long time periods. The resulting database consisted of huge amounts of data that were then analyzed to create the various coefficients used to forecast power demand. In this research, we take advantage of universally used analysis techniques analysis, but we also use easily available data-mining techniques to analyze patterns of days and special days(holidays, etc.). We then present a new method for estimating and forecasting power flow using decision tree analysis. And because analyzing the relationship between the estimate and power system ceiling Trices currently set by the Korea Power Exchange. We included power system ceiling prices in our estimate coefficients and estimate method.

  • PDF

Data Mining Technique Using the Coefficient of Determination in Holiday Load Forecasting (특수일 최대 전력 수요 예측을 위한 결정계수를 사용한 데이터 마이닝)

  • Wi, Young-Min;Song, Kyung-Bin;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.18-22
    • /
    • 2009
  • Short-term load forecasting (STLF) is an important task in power system planning and operation. Its accuracy affects the reliability and economic operation of power systems. STLF is to be classified into load forecasting for weekdays, weekends, and holidays. Due to the limited historical data available, it is more difficult to accurately forecast load for holidays than to forecast load for weekdays and weekends. It has been recognized that the forecasting errors for holidays are large compared with those for weekdays in Korea. This paper presents a polynomial regression with data mining technique to forecast load for holidays. In statistics, a polynomial is widely used in situations where the response is curvilinear, because even complex nonlinear relationships can be adequately modeled by polynomials over a reasonably small range of the dependent variables. In the paper, the coefficient of determination is proposed as a selection criterion for screening weekday data used in holiday load forecasting. A numerical example is presented to validate the effectiveness of the proposed holiday load forecasting method.

Development of SMP Forecasting Method Using ARIMA Model (ARIMA 모형을 이용한 계통한계가격 예측 방법론 개발)

  • Kim, Dae-Yong;Lee, Chan-Joo;Park, Jong-Bae;Shin, Joong-Rin;Chun, Yeong-Han
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.148-150
    • /
    • 2005
  • Since the SMP(System Marginal Price) is a vital factor to the market participants who intend to maximize the their profit and to the ISO(Independent System Operator) who wish to operate the electricity market in a stable sense, the short-term marginal price forecasting should be performed correctly. This paper presents a methodology of a day-ahead SMP forecasting using ARIMA(Autoregressive Integrated Moving Average) based on the Time Series. And also we suggested a correction algorithm to minimize the forecasting error in order to improve efficiency and accuracy of the SMP forecasting. To show the efficiency and effectiveness of the proposed method, the numerical studies have been performed using Historical data of SMP in 2004 published by KPX(Korea Power Exchange).

  • PDF

Short Term Forecast Model for Solar Power Generation using RNN-LSTM (RNN-LSTM을 이용한 태양광 발전량 단기 예측 모델)

  • Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.233-239
    • /
    • 2018
  • Since solar power generation is intermittent depending on weather conditions, it is necessary to predict the accurate generation amount of solar power to improve the efficiency and economical efficiency of solar power generation. This study proposes a short - term deep learning prediction model of solar power generation using meteorological data from Mokpo meteorological agency and generation data of Yeongam solar power plant. The meteorological agency forecasts weather factors such as temperature, precipitation, wind direction, wind speed, humidity, and cloudiness for three days. However, sunshine and solar radiation, the most important meteorological factors for forecasting solar power generation, are not predicted. The proposed model predicts solar radiation and solar radiation using forecast meteorological factors. The power generation was also forecasted by adding the forecasted solar and solar factors to the meteorological factors. The forecasted power generation of the proposed model is that the average RMSE and MAE of DNN are 0.177 and 0.095, and RNN is 0.116 and 0.067. Also, LSTM is the best result of 0.100 and 0.054. It is expected that this study will lead to better prediction results by combining various input.

A study on short-term wind power forecasting using time series models (시계열 모형을 이용한 단기 풍력발전 예측 연구)

  • Park, Soo-Hyun;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1373-1383
    • /
    • 2016
  • The wind energy industry and wind power generation have increased; consequently, the stable supply of the wind power has become an important issue. It is important to accurately predict the wind power with short-term basis in order to make a reliable planning for the power supply and demand of wind power. In this paper, we first analyzed the speed, power and the directions of the wind. The neural network and the time series models (ARMA, ARMAX, ARMA-GARCH, Holt Winters) for wind power generation forecasting were compared based on mean absolute error (MAE). For one to three hour-ahead forecast, ARMA-GARCH model was outperformed, and the neural network method showed a better performance in the six hour-ahead forecast.