• 제목/요약/키워드: Short-circuit current

검색결과 1,004건 처리시간 0.031초

CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구 (Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer)

  • 박소현;강학수;나타라잔센틸루마르;박대원;최영선
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.191-197
    • /
    • 2009
  • 박막형 유기 태양전지의 성능 향상을 위하여 정공 수송층인 CuPc 층에 강한 p형 유기 반도체인 $F_4$-TCNQ을 도핑하여 ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5wt%)/CuPc:C60 (blending ratio 1 : 1)/C60/BCP/LiF/Al의 이종 접합 구조를 가지는 P-i-n형 유기 박막형 태양전지 소자를 진공증착 장비를 이용하여 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor: FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 굉가를 수행하였다. CuPc 층에 $F_4$-TCNQ을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수강도가 증가하였으며, $F_4$-TCNQ가 도핑된 CuPc 박막에서 $F_4$-TCNQ 유기 분자의 분산성 향상, 박막의 표면 균일성, 주입 전류(injection currents) 향상 효과등에 의해서 제조된 p-i-n형 유기 박막 태양전지의 성능이 향상되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 0.15%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

벨로우즈 방식의 폐회로를 가진 공압식 심실 보조장치의 최적 작동을 위한 압력 조절 시스템 (Pressure Regulation System for Optimal Operation of the Pneumatic VAD with Bellows-Type Closed Pneumatic Circuit)

  • 김범수;이정주;남경원;정기석;안치범;선경
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권4호
    • /
    • pp.569-576
    • /
    • 2007
  • Ventricular Assist Device(VAD) has switched its goal from a short-tenn use for bridge-to-transplantation to a long-tenn use for destination therapy, With this goal, the importance of long-tenn reliability gets more interests and importances, H-VAD is an portable extracorporeal biventricular assist device, and adopts an electro-pneumatic driving mechanism. The pneumatic pressure to pump out blood is generated with compression of bellows, and is transmitted in a closed pneumatic circuit through a pneumatic line. The existing pneumatic VAD adopts a air compressor which can generate stable pressures but has defects such as a noise and a size problem. Thus, it is not suitable for being used as a portable device, These problems are covered with adopting a closed pneumatic circuit mechanism with a bellows which has a small size and small noise generation, but it has defects that improper pneumatic setting causes a failure of adequate flow generation. In this study, the pneumatic pressure regulation system is developed to cover these defects of a bellows-type pneumatic VAD. The optimal pneumatic pressure conditions according to various afterload conditions for an optimal flow rate were investigated and the afterload estimation algorithm was developed, The final pneumatic regulation system estimates a current afterload and regulate the pneumatic pressure to the optimal point at a given afterload condition. The afterload estimation algorithm showed a sufficient performance that the standard deviation of error is 8.8 mmHg, The pneumatic pressure regulation system showed a sufficient performance that the flow rate was stably governed to various afterload conditions. In a further study, if a additional sensor such as ultrasonic sensor is developed to monitor the direct movement of diaphragm in a blood pump part, the reliability would be greatly increased. Moreover, if the afterload estimation algorithm gets more accuracy, it would be also helpful to monitor the hemodynamic condition of patients.

Channel and Gate Workfunction-Engineered CNTFETs for Low-Power and High-Speed Logic and Memory Applications

  • Wang, Wei;Xu, Hongsong;Huang, Zhicheng;Zhang, Lu;Wang, Huan;Jiang, Sitao;Xu, Min;Gao, Jian
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권1호
    • /
    • pp.91-105
    • /
    • 2016
  • Carbon Nanotube Field-Effect Transistors (CNTFETs) have been studied as candidates for post Si CMOS owing to the better electrostatic control and high mobility. To enhance the immunity against short - channel effects (SCEs), the novel channel and gate engineered architectures have been proposed to improve CNTFETs performance. This work presents a comprehensive study of the influence of channel and gate engineering on the CNTFET switching, high frequency and circuit level performance of carbon nanotube field-effect transistors (CNTFETs). At device level, the effects of channel and gate engineering on the switching and high frequency characteristics for CNTFET have been theoretically investigated by using a quantum kinetic model. This model is based on two-dimensional non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. It is revealed that hetero - material - gate and lightly doped drain and source CNTFET (HMG - LDDS - CNTFET) structure can significantly reduce leakage current, enhance control ability of the gate on channel, improve the switching speed, and is more suitable for use in low power, high frequency circuits. At circuit level, using the HSPICE with look - up table(LUT) based Verilog - A models, the impact of the channel and gate engineering on basic digital circuits (inverter, static random access memory cell) have been investigated systematically. The performance parameters of circuits have been calculated and the optimum metal gate workfunction combinations of ${\Phi}_{M1}/{\Phi}_{M2}$ have been concluded in terms of power consumption, average delay, stability, energy consumption and power - delay product (PDP). In addition, we discuss and compare the CNTFET-based circuit designs of various logic gates, including ternary and binary logic. Simulation results indicate that LDDS - HMG - CNTFET circuits with ternary logic gate design have significantly better performance in comparison with other structures.

가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작 (Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells)

  • 조정민;조정대;김태일;김동수
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.993-998
    • /
    • 2014
  • Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).

초음파를 이용한 비상방송시스템에 관한 연구 (Study on the Emergency Broadcasting System Using Ultrasonic Waves)

  • 백동현
    • 한국화재소방학회논문지
    • /
    • 제33권6호
    • /
    • pp.186-189
    • /
    • 2019
  • NFSC202에는 화재로 인하여 하나의 층의 확성기 또는 배선이 단락되어도 다른 층의 화재 통보에 지장이 없도록 규정하고 있다. 이를 위해 Analog digital converter (ADC), High pass filter (HPF), Low pass filter (LPF)로 구성된 초음파송수신장치를 제작하였으며 시험을 통해 해당 장치가 증폭기출력, 확성기용량, 음량레벨의 변동에 관계없이 동작함을 확인하였다. 또한 기준주파수 110 kHz(-12 dB)를 송신하는 경우 단락시 -12dB~-18 dB, 정상인 경우-24 dB~-66 dB, 단선시에는 -66 dB을 초과하는 경우와 수신데이터가 없는 경우의 설정된 값을 만족하였다. 따라서 NFSC202 규정에 적정한 시스템임을 확인하였으며 본 시스템을 적용할 경우 점검기준이나 시험기준이 수정 또는 개정되어야 한다.

Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성 (Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells)

  • 이동민;장준성;김지훈;이인재;이병훈;조은애;김진혁
    • 한국재료학회지
    • /
    • 제30권6호
    • /
    • pp.285-291
    • /
    • 2020
  • Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 ㎠/Vs and low resistivity and sheet resistance of 3.5810-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65 % in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51 % efficiency by improving the short-circuit current density and fill factor to 27.7 mV/㎠ and 62 %, respectively.

티타니아 나노튜브를 이용한 염료감응 태양전지 (Titania Nanotube-based Dye-sensitized Solar Cells)

  • 김태현;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.447-452
    • /
    • 2018
  • HF, NaF, $NH_4F$와 같이 플루오르 이온(F-)이 함유된 전해질에서 티타늄 금속판을 양극산화시켜 $0.34{\mu}m$부터 최대 $8.9{\mu}m$까지 다양한 길이의 티타니아 나노튜브(TNT)를 제조하였다. 양극산화에 의해 제조된 TNT를 $450^{\circ}C$에서 소성시키면 광 활성을 가지는 아나타제 결정이 생성되었다. TNT 기반 염료감응 태양전지(DSSC)는 TNT 길이가 $2.5{\mu}m$일때 광전환 효율이 4.71%로 최대를 나타내었다. 이 값은 티타니아 페이스트를 코팅하여 제작한 FTO 기반 DSSC의 광전환 효율 보다 약 18% 높았다. 또한 TNT-DSSC의 단락전류밀도($J_{sc}$)는 $9.74mA/cm^2$로 FTO-DSSC의 $7.19mA/cm^2$ 보다 약 35% 이상 높았다. TNT-DSSC 태양전지의 광전환 효율이 더 높은 이유는 염료에서 생성된 광전자가 TNT를 통해 전극 표면으로 빨리 전달되어 광전자와 염료가 재결합 되는 것이 억제되었기 때문이다.

저손실형 몰드 단권변압기 개발 (A study on the Development of Low-loss Type Mold Autotransformers)

  • 이종수;신명호;문병철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.92-94
    • /
    • 2003
  • The autotransformer currently used on the electric railway system is made of class A insulation material and uses the paper insulation method. As a power converter supplying power to the trolley wire, the autotransformer is one of critical equipment in the railway system. In the autotransformer, load irregularly changes and overload often occurs. These cause overheating of the autotransformer and facilitate deterioration of the autotransformer resulting in burnout accidents due to insulation breakdown. Also, the current autotransformer has poor insolation and short-circuit strength which often badly affect the service life of the transformer, and needs to improve its quality urgently. To overcome one of existing shortcomings of the mold transformer, manufacturers use epoxy resins that have superior flame retardancy to get rid of fro and explosion possibilities during accidents. Currently, new mold transformers are used in indoor distribution facilities with fire-fighting equipments. Coils molded in epoxy resins do not have their insulation performance compromised by humidity, dust, etc enabling easy inspection and maintenance. Comparing to the oil immersed transformer, the mold transformer does not have any concern about environmental pollutions by oil leak or replacement Therefore, to reduce breakdowns and improve reliability of the autotransformer, it is necessary to develop a new mold autotransformer with low loss suitable for our environment to suppress breakdowns of the autotransformer and improve the reliability. This study is about development of a low-loss mold autotransformer necessitated by reasons mentioned earlier.

  • PDF

Construction of Korean Space Weather Prediction Center: Space radiation effect

  • Lee, Jae-Jin;Cho, Kyung-Suk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Khan-Hyuk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk;Choi, Seong-Hwan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.33.3-34
    • /
    • 2008
  • As an activity of building Korean Space Weather Prediction Center (KSWPC), we has studied of radiation effect on the spacecraft components. High energy charged particles trapped by geomagnetic field in the region named Van Allen Belt can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  • PDF

단결정 실리콘 태양전지에 형성한 다공성실리콘 반사방지막의 선택적 에미터 특성 연구 (Selective Emitter Effect of porous silicon AR Coatings formed on single crystalline silicon solar cells)

  • 이현우;김도완;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.116-117
    • /
    • 2006
  • We investigated selective emitter effect of Porous Silicon (PSI) as antireflection coatings (ARC). The thin PSi layer, less than 100nm, was electrochemically formed by electrochemical method in about $3{\mu}m$ thick $n^+$ emitter on single crystalline silicon wafer (sc-Si). The appropriate PSi formations for selective emitter effect were carried out a two steps. A first set of samples allowed to be etched after metal-contact processing and a second one to evaporate Ag front-side metallization on PSi layer, by evaluating the I-V features The PSi has reflectance less than 20% in wavelength for 450-1000nm and porosity is about 60%. The cell made after front-contact has improved cell efficiency of about in comparison with the one made after PSi. The observed increase of efficiency for samples with PSi coating could be explained not only by the reduction of the reflection loss and surface recombination but also by the increased short-circuit current (Isc) within selective emitter. The assumption was confirmed by numerical modeling. The obtained results point out that it would be possible to prepare a solar cell over 15% efficiency by the proposed simple technology.

  • PDF