• Title/Summary/Keyword: Short-Term Memory

Search Result 756, Processing Time 0.03 seconds

Driving Anomaly Pattern Detection System Based on Vehicle Internal Diagnostic Data Analysis (차량 내부 진단 데이터 분석 기반의 주행 이상 패턴 감지 시스템)

  • Tae-jeong Park;Ji-ho Park;Bo-yoon Seo;Jun-ha Shin;Kyung-hwan Choi;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.299-300
    • /
    • 2024
  • 첨단 기술의 발전과 함께 지능형 운전자 보조 시스템의 성능 및 교통 시스템 체계가 고도화됨에 따라 전반적인 교통사고 발생 건수는 줄어드는 추세지만 대한민국의 교통사고 발생 빈도는 아직 OECD 평균 대비 높은 실정이다. 특히, 2020년 경제 협력 개발 기구(OECD) 통계에 따르면 대한민국의 인구 10만 명당 교통사고 사망자 수는 회원국 36개 중 29위로 매우 높은 축에 속한다. 따라서, 본 논문에서는 교통사고 발생률을 낮추는 데 도움을 줄 수 있는 주행 이상 패턴 감지 시스템을 제안한다. 제안한 방법에서는 실시간 영상 분석을 통해 신호등 및 차선을 인식함과 동시 차량 내부 진단 데이터에 대한 시계열 분석을 기반으로 운전자의 운전 패턴을 분석한 후 평소와 다른 이상 징후를 발견하면 운전자에게 경고 알림을 제공하여 위험한 상황을 회피할 수 있도록 지원한다.

  • PDF

Point of Interest Recommendation System Using Sentiment Analysis

  • Gaurav Meena;Ajay Indian;Krishna Kumar Mohbey;Kunal Jangid
    • Journal of Information Science Theory and Practice
    • /
    • v.12 no.2
    • /
    • pp.64-78
    • /
    • 2024
  • Sentiment analysis is one of the promising approaches for developing a point of interest (POI) recommendation system. It uses natural language processing techniques that deploy expert insights from user-generated content such as reviews and feedback. By applying sentiment polarities (positive, negative, or neutral) associated with each POI, the recommendation system can suggest the most suitable POIs for specific users. The proposed study combines two models for POI recommendation. The first model uses bidirectional long short-term memory (BiLSTM) to predict sentiments and is trained on an election dataset. It is observed that the proposed model outperforms existing models in terms of accuracy (99.52%), precision (99.53%), recall (99.51%), and F1-score (99.52%). Then, this model is used on the Foursquare dataset to predict the class labels. Following this, user and POI embeddings are generated. The next model recommends the top POIs and corresponding coordinates to the user using the LSTM model. Filtered user interest and locations are used to recommend POIs from the Foursquare dataset. The results of our proposed model for the POI recommendation system using sentiment analysis are compared to several state-of-the-art approaches and are found quite affirmative regarding recall (48.5%) and precision (85%). The proposed system can be used for trip advice, group recommendations, and interesting place recommendations to specific users.

Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model (LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석)

  • Minsang Kang;Eunkuk Son;Jinjae Lee;Seungjin Kang
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

An indoor localization system for estimating human trajectories using a foot-mounted IMU sensor and step classification based on LSTM

  • Ts.Tengis;B.Dorj;T.Amartuvshin;Ch.Batchuluun;G.Bat-Erdene;Kh.Temuulen
    • International journal of advanced smart convergence
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • This study presents the results of designing a system that determines the location of a person in an indoor environment based on a single IMU sensor attached to the tip of a person's shoe in an area where GPS signals are inaccessible. By adjusting for human footfall, it is possible to accurately determine human location and trajectory by correcting errors originating from the Inertial Measurement Unit (IMU) combined with advanced machine learning algorithms. Although there are various techniques to identify stepping, our study successfully recognized stepping with 98.7% accuracy using an artificial intelligence model known as Long Short-Term Memory (LSTM). Drawing upon the enhancements in our methodology, this article demonstrates a novel technique for generating a 200-meter trajectory, achieving a level of precision marked by a 2.1% error margin. Indoor pedestrian navigation systems, relying on inertial measurement units attached to the feet, have shown encouraging outcomes.

Oral Administration of Bifidobacterium lactis Ameliorates Cognitive Deficits in Mice Intracerebroventricularly Administered Amyloid Beta via Regulation the Activation of Mitogen-activated Protein Kinases

  • Jong Kyu Choi;Oh Yun Kwon;Seung Ho Lee
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.607-619
    • /
    • 2024
  • Probiotics are functional microorganisms that exhibit various biological activities, such as allergic reactions, inflammation, and aging. The aim of this study is to evaluate the effects of Bifidobacterium lactis CBT BL3 (BL) on the amyloid beta (Aβ)-mediated cognitive impairments. Oral administration of live BL to intracerebroventricularly Aβ-injected mice significantly attenuated short- and long-term memory loss estimated using the Y-maze and Morris water maze tests. We found that expression of apoptosisrelated proteins such as caspase-9, caspase-3, and cleaved poly (ADP-ribose) polymerase was significantly elevated in the brain tissues of Aβ-injected mouse brains when compared to that of the control mouse group. Interestingly, these expression levels were significantly decreased in the brain tissue of mice fed BL for 6 wk. In addition, the abnormal over-phosphorylation of mitogen-activated protein kinases (MAPKs) such as ERK1/2, p38 MAPK, and JNK in the brain tissue of intracerebroventricularly Aβ-injected mice was significantly attenuated by oral administration of BL. Taken together, the results indicate that Aβ-induced cognitive impairment may be ameliorated by the oral administration of BL by controlling the activation of MAPKs/apoptosis in the brain. This study strongly suggests that BL can be developed as a functional probiotic to attenuate Aβ-mediated cognitive deficits.

Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer

  • Ruwei Ma;Zhexuan Zhu;Chunxiang Li;Liyuan Cao
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.461-475
    • /
    • 2024
  • A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.

LSTM-based fraud detection system framework using real-time data resampling techniques (실시간 리샘플링 기법을 활용한 LSTM 기반의 사기 거래 탐지 시스템)

  • Seo-Yi Kim;Yeon-Ji Lee;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.505-508
    • /
    • 2024
  • 금융산업의 디지털 전환은 사용자에게 편리함을 제공하지만 기존에 존재하지 않던 보안상 취약점을 유발했다. 이러한 문제를 해결하기 위해 기계학습 기술을 적용한 사기 거래 탐지 시스템에 대한 연구가 활발하게 이루어지고 있다. 하지만 모델 학습 과정에서 발생하는 데이터 불균형 문제로 인해 오랜 시간이 소요되고 탐지 성능이 저하되는 문제가 있다. 본 논문에서는 실시간 데이터 오버 샘플링을 통해 이상 거래 탐지 시 데이터 불균형 문제를 해결하고 모델 학습 시간을 개선한 새로운 이상 거래 탐지 시스템(Fraud Detection System, FDS)을 제안한다. 본 논문에서 제안하는 SMOTE(Synthetic Minority Oversampling Technique)를 적용한 LSTM(Long-Short Term Memory) 알고리즘 기반의 FDS 프레임워크는 종래의 LSTM 알고리즘 기반의 FDS 모델과 비교했을 때, 데이터 사이즈가 96.5% 감소했으며, 정밀도, 재현율, F1-Score 가 34.81%, 11.14%, 22.51% 개선되었다.

Violent crowd flow detection from surveillance cameras using deep transfer learning-gated recurrent unit

  • Elly Matul Imah;Riskyana Dewi Intan Puspitasari
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.671-682
    • /
    • 2024
  • Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.

A machine learning informed prediction of severe accident progressions in nuclear power plants

  • JinHo Song;SungJoong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2266-2273
    • /
    • 2024
  • A machine learning platform is proposed for the diagnosis of a severe accident progression in a nuclear power plant. To predict the key parameters for accident management including lost signals, a long short term memory (LSTM) network is proposed, where multiple accident scenarios are used for training. Training and test data were produced by MELCOR simulation of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident at unit 3. Feature variables were selected among plant parameters, where the importance ranking was determined by a recursive feature elimination technique using RandomForestRegressor. To answer the question of whether a reduced order ML model could predict the complex transient response, we performed a systematic sensitivity study for the choices of target variables, the combination of training and test data, the number of feature variables, and the number of neurons to evaluate the performance of the proposed ML platform. The number of sensitivity cases was chosen to guarantee a 95 % tolerance limit with a 95 % confidence level based on Wilks' formula to quantify the uncertainty of predictions. The results of investigations indicate that the proposed ML platform consistently predicts the target variable. The median and mean predictions were close to the true value.

Macroeconomic Determinants of Housing Prices in Korea VAR and LSTM Forecast Comparative Analysis During Pandemic of COVID-19

  • Starchenko, Maria;Jangsoon Kim;Namhyuk Ham;Jae-Jun Kim
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2024
  • During COVID-19 the housing market in Korea experienced the soaring prices, despite the decrease in the economic growth rate. This paper aims to analyze macroeconomic determinants affecting housing prices in Korea during the pandemic and find an appropriate statistic model to forecast the changes in housing prices in Korea. First, an appropriate lag for the model using Akaike information criterion was found. After the macroeconomic factors were checked if they possess the unit root, the dependencies in the model were analyzed using vector autoregression (VAR) model. As for the prediction, the VAR model was used and, besides, compared afterwards with the long short-term memory (LSTM) model. CPI, mortgage rate, IIP at lag 1 and federal funds effective rate at lag 1 and 2 were found to be significant for housing prices. In addition, the prediction performance of the LSTM model appeared to be more accurate in comparison with the VAR model. The results of the analysis play an essential role in policymaker perception when making decisions related to managing potential housing risks arose during crises. It is essential to take into considerations macroeconomic factors besides the taxes and housing policy amendments and use an appropriate model for prices forecast.