• Title/Summary/Keyword: Short term load forecasting

Search Result 108, Processing Time 0.025 seconds

24 hour Load Forecasting using Combined Very-short-term and Short-term Multi-Variable Time-Series Model (초단기 및 단기 다변수 시계열 결합모델을 이용한 24시간 부하예측)

  • Lee, WonJun;Lee, Munsu;Kang, Byung-O;Jung, Jaesung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.493-499
    • /
    • 2017
  • This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting.

The Development of Short-term Load Forecasting System Using Ordinary Database (범용 Database를 이용한 단기전력수요예측 시스템 개발)

  • Kim Byoung Su;Ha Seong Kwan;Song Kyung Bin;Park Jeong Do
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.683-685
    • /
    • 2004
  • This paper introduces a basic design for the short-term load forecasting system using a commercial data base. The proposed system uses a hybrid load forecasting method using fuzzy linear regression for forecasting of weekends and Monday and general exponential smoothing for forecasting of weekdays. The temperature sensitive is used to improve the accuracy of the load forecasting during the summer season. MS-SQL Sever has been used a commercial data base for the proposed system and the database is operated by ADO(ActiveX Data Objects) and RDO(Remote Data Object). Database has been constructed by altering the historical load data for the past 38 years. The weather iDormation is included in the database. The developed short-term load forecasting system is developed as a user friendly system based on GUI(Graphical User interface) using MFC(Microsoft Foundation Class). Test results show that the developed system efficiently performs short-term load forecasting.

  • PDF

Short-Term Load Forecasting for the Consecutive Holidays Considering Businesses' Operation Rates of Industries (산업체의 조업률을 반영한 연휴의 단기 전력수요예측)

  • Song, Kyung-Bin;Lim, Jong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1657-1660
    • /
    • 2013
  • Short-term load forecasting for Chusok and New Year's consecutive holidays is very difficult, due to the irregular characteristics compared with ordinary weekdays and insufficient holidays historical data. During consecutive holidays of New Year and Chusok, most of industries reduce their operation rates and their electrical load levels. The correlation between businesses' operation rates and their loads during consecutive holidays of New Year and Chusok is analysed and short-term load forecasting algorithm for consecutive holidays considering businesses' operation rates of industries is proposed. Test results show that the proposed method improves the accuracy of short-term load forecasting over fuzzy linear regression method.

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

Development of Neural Network System for Short-Term Load Forecasting for a Special Day (특수일 전력수요예측을 위한 신경회로망 시스템의 개발)

  • Kim, Kwang-Ho;Youn, Hyoung-Sun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.379-384
    • /
    • 1998
  • Conventional short-term load forecasting techniques have limitation in their use on holidays due to dissimilar load behaviors of holidays and insufficiency of pattern data. Thus, a new short-term load forecasting method for special days in anomalous load conditions is proposed in this paper. The proposed method uses two Artificial Neural Networks(ANN); one is for the estimation of load curve, and the other is for the estimation of minimum and maximum value of load. The forecasting procedure is as follows. First, the normalized load curve is estimated by ANN. At next step, minimum and maximum values of load in a special day are estimated by another ANN. Finally, the estimate of load in a whole special day is obtained by combining these two outputs of ANNs. The proposed method shows a good performance, and it may be effectively applied to the practical situations.

  • PDF

Optimal Coefficient Selection of Exponential Smoothing Model in Short Term Load Forecasting on Weekdays (평일 단기전력수요 예측을 위한 최적의 지수평활화 모델 계수 선정)

  • Song, Kyung-Bin;Kwon, Oh-Sung;Park, Jeong-Do
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.149-154
    • /
    • 2013
  • Short term load forecasting for electric power demand is essential for stable power system operation and efficient power market operation. High accuracy of the short term load forecasting can keep the power system more stable and save the power market operation cost. We propose an optimal coefficient selection method for exponential smoothing model in short term load forecasting on weekdays. In order to find the optimal coefficient of exponential smoothing model, load forecasting errors are minimized for actual electric load demand data of last three years. The proposed method are verified by case studies for last three years from 2009 to 2011. The results of case studies show that the average percentage errors of the proposed load forecasting method are improved comparing with errors of the previous methods.

Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy (단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안)

  • Lim, Jong-Hun;Kim, Si-Yeon;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

The 24 Hourly Load Forecasting of the Election Day Using the Load Variation Rate (부하변동율을 이용한 선거일의 24시간 수요예측)

  • Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1041-1045
    • /
    • 2010
  • Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.

Development of Neural Network System for Short-Term Load Forecasting (특수일 전력수요예측을 위한 신경회로망 시스템의 개발)

  • Kim, Kwang-Ho;Youn, Hyoung-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.850-853
    • /
    • 1998
  • This paper proposes a new short-term load forecasting method for special day, such as Public holidays, consecutive holidays, and days before and after holidays. when the load curves are quite different from those of normal weekdays. In this paper, two Artificial Neural Network(ANN) systems are applied to short-term load forecasting for spacial days in anomalous load conditions.

  • PDF

A Study on Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기부하예측 시스템 연구)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF