• Title/Summary/Keyword: Short fiber-reinforced composite

Search Result 112, Processing Time 0.022 seconds

Incremental Theory of Reinforcement Damage in Discontinuously-Reinforced Composite (분산형 복합재료의 강화재 손상 증분형 이론)

  • 김홍건
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.122-126
    • /
    • 2000
  • In particle or short-fiber reinforced composites cracking of the reinforcements is a significant damage mode because the broken reinformcements lose load carrying capacity . The average stress in the inhomogeneity represents its load carrying capacity and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix, An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. influence of the cracking damage on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Experimental behavior assessment of short, randomly-oriented glass-fiber composite pipes

  • Salar Rasti;Hossein Showkati;Borhan Madroumi Aghbashi;Soheil Nejati Ozani;Tadeh Zirakian
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.679-691
    • /
    • 2023
  • The application of short, fiber-reinforced polymer composite pipes has been increasing rapidly. A comprehensive review of the prior research reveals that the majority of the previously-reported studies have been conducted on the filament-wound composite pipes, and fewer studies have been reported on the mechanical behavior of short, randomly-oriented fiber composite pipes. On this basis, the main objective of this research endeavor is to investigate the mechanical behavior and failure modes of short, randomly-oriented glass-fiber composite pipes under three-point bending tests. To this end, an experimental study is performed in order to explore the load-bearing capacity, failure mechanism, and deformation performance of such pipes. Fourteen properly-instrumented composite pipe specimens with different diameters, thicknesses, lengths, and nominal pressures have been tested and also simulated using the finite element approach for verification purposes. This study demonstrates the effectiveness of the diameter-to-thickness ratio, length-to-diameter ratio, and nominal pressure on the mechanical behavior and deformation performance of short, randomly-oriented glass-fiber composite pipes.

Tests on fiber reinforced concrete filled steel tubular columns

  • Gopal, S. Ramana;Devadas Manoharan, P.
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.37-48
    • /
    • 2004
  • This paper deals with the strength and deformation of both short and slender concrete filled steel tubular columns under the combined actions of axial compression and bending moment. Sixteen specimens were tested to investigate the effect of fiber reinforced concrete on the ultimate strength and behavior of the composite column. The primary test parameters were load eccentricity and column slenderness. Companion tests were also undertaken on eight numbers of similar empty steel tubes to highlight the synergistic effects of composite column. The test results demonstrate the influence of fiber reinforced concrete on the strength and behavior of concrete filled steel tubular columns.

The Fiber Damage and Mechanical Properties of Short-fiber Reinforced Composite Depending on Nozzle Size Variations in Injection/Mold Sides (단섬유강화 복합재료에서 사출측/금형측 노즐 크기 변화에 따른 섬유손상 및 기계적 성질)

  • Lee, In-Seop;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.564-573
    • /
    • 2001
  • The mechanical properties of short carbon/glass fiber reinforced polypropylene are experimentally measured as functions of fiber content and nozzle diameter. Also, these properties are compared with the survival rate of reinforced fibers and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber aspect ratio as well as fiber volume fraction is influenced by injection processing condition, the used materials and mold conditions such as diameter of nozzle, etc. In this study, the survival rate of fiber aspect ratio is investigated by nozzle size variations in injection/mold sides. It is found that the survival rate of glass fiber is higher that the survival rate of glass fiber is higher than that of carbon fiber. Both tensile modulus and strength of short-fiber reinforced polypropylene are improved s the fiber volume fraction and nozzle diameter are increased.

Influence of hot-pressing pressure on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Sharma, Sharad Chandra
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The 'hybrid carbon-fiber-reinforced mesophase-pitch-derived carbon-matrix' composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.

A Study on the Evolution of Local Plasticity and the Bauschinger Effects in Short Fiber Reinforced Metal Matrix Composites (단섬유 금속복합체에서의 소성역 전개과정 및 바우신저 효과에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.22-33
    • /
    • 1998
  • A continuum analysis of the evolution of plasticity and Bauschinger effect in a short fiber reinforced metal matrix composite, based on the FEM solution for a single fiber model has been performed to investigate the strengthening behavior. The evolution of matrix field quantities during one cycle of fully reversed loading have been examined in detail. The results indicate that the role of constrained matrix flow in generating different levels of matrix triaxiality during forward and reversed loading provides an important contribution to the developement of the Bauschinger effect in the metal matrix composite. Therefore, even when the plastic flow of the matrix material follows on isotropic hardening behavior, the Bauschinger effect is predicted for the composite material.

  • PDF

The Influence of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 동적 특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.30-37
    • /
    • 2000
  • The dynamic properties of short-fiber reinforced Chloroprene rubber have been studied as functions of interphase conditions and fiber content. The loss factor generally decreased with fiber content and showed different patterns according to interphase conditions. The better interphase condition showed the lower loss modulus, $E_2$. Also, the dynamic ratio decreased with fiber content and rapidly decreased in the case of double coatings, i.e., model C. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio($\sqrt{2}$ min.) compared to frequency ratio($\sqrt{2}$ max.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

Environment Deterioration Characteristics of Polypropylene / Glass Fiber Composites under Moisture Absorption Environment (흡습 환경 하의 폴리프로필렌/유리 섬유 강화 복합재료의 환경 열화 특성)

  • Kim, Yun-Hae;Park, Chang-Wook;Jung, Gyung-Seok;Shin, Seok-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.520-525
    • /
    • 2016
  • In this study, a mixture of polypropylene fibers and glass fibers were used to weave polypropylene/glass fiber-reinforced composite panels with characteristics such as highly elongated short fibers, high ductility, anti-fouling, and hydrophobicity as a result of a directional property. Mechanical and environmental tests were carried out with specimens fabricated with this composite panel, and its applicability to shipbuilding and ocean leisure industries was evaluated through a comparison with existing glass fiber-reinforced composite materials. The results of this experiment verified the excellence of the polypropylene/glass-mixed woven fiber-reinforced composite material compared to the existing glass fiber-reinforced composite material. However, the forming process needs to be changed to improve the weak interfacial bonding, and the properties of the composite material itself could be improved through mixed weaving with other fibers after development. Maximizing of the advantages of the polypropylene fibers and overcoming their shortcomings will improve their applicability to the shipbuilding, ocean leisure, and other industries, and increase the value of polypropylene fibers in the composite material market.

INVESTIGATION OF A STRESS FIELD EVALUATED BY ELASTIC-PLASTIC ANALYSIS IN DISCONTINUOUS COMPOSITES

  • Kim, H.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.483-491
    • /
    • 2007
  • A closed form solution of a composite mechanics system is performed for the investigation of elastic-plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and matrix yielding behavior in short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.

Prediction of effective stiffness on short fiber reinforced composite materials (단섬유 복합재료의 탄성계수 예측)

  • 임태원;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.611-617
    • /
    • 1991
  • Effective stiffness of short fiber composite with a three-dimensional random orientation of fibers is derived theoretically and compared with available experimental data. The laminate analogy and transformed laminate analogy are used for modulus prediction of 2-D and 3-D random composites, respectively. The effective stiffness of random oriented fiber composite can be expressed in terms of longitudinal and transverse stiffnesses of unidirectional composites. The result of transformed laminate analogy is more accurate than other approaches such as, Christensen-Waals equational and Lavengood-Goettler equation, etc. Also the effective properties of random oriented fiber composite can be expressed in terms of fiber and matrix properties such as elastic modulus, shear modulus and Poisson's ratio.