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ABSTRACT-A closed form solution of a composite mechanics system is performed for the investigation of elastic-
plastic behavior in order to predict fiber stresses, fiber/matrix interfacial shear stresses, and mairix yielding behavior in
short fiber reinforced metal matrix composites. The model is based on a theoretical development that considers the stress
concentration between fiber ends and the propagation of matrix plasticity and is compared with the results of a
conventional shear lag model as well as a modified shear lag model. For the region of matrix plasticity, slip mechanisms
between the fiber and matrix which normally occur at the interface are taken into account for the derivation. Results of
predicted stresses for the small-scale yielding as well as the large-scale yielding in the matrix are compared with other
theories. The effects of fiber aspect ratio are also evaluated for the internal elastic-plastic stress field. It is found that the
incorporation of strong fibers results in substantial improvements in composite strength relative to the fiber/matrix
interfacial shear stresses, but can produce earlier matrix yielding because of intensified stress concentration effects. It is
also found that the present model can be applied to investigate the stress transfer mechanism between the elastic fiber and
the elastic-plastic matrix, such as in short fiber reinforced metal matrix composites.
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1. INTRODUCTION

Vehicle weight reduction has been of great interest to the
automotive industry (Park et al., 2005). Metal matrix
composite are one of the most promising substitutes as a
structural materials for many automotive and aerospace
parts and for other applications (Agarwal et al., 1980;
Taya and Arsenault, 1989). Shear lag theory is one of the
most popular models for these composites because of its
simplicity (Agarwal ef al., 1974; Clyne, 1989; Cox, 1952).
However, the major shortcoming of conventional shear
lag (CSL) theory is that it is not able to provide sufficient
accuracy in stress prediction when the fiber aspect ratio is
small (Kim, 1998; Nardone and Prewo, 1986; Starink and
Syngellakis, 1999). Accordingly, Nardone and Prewo
(1986) attempted to modify the CSL by taking into
account the tensile load transfer from the matrix to the
discontinuous reinforcement. Their modified shear lag
(MSL) model fits the experimental data well for predic-
tion of yield strength of composites though it is limited
by the assumption that the fiber stress has a constant
value after matrix yielding, which shows the elastic-
plastic composite behavior somewhat differently.
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On the other hand, it has been proposed that the com-
posite strengthening results from an increased dislocation
density in the matrix due to a difference in the thermal
expansion between the fiber and the matrix (Taya and
Arsenault, 1987). However, the theory is unable to ex-
plain why the proportional limit of the composite remains
similar to that of the matrix or why the strength of the
composite is anisotropic. Obviously, the CSL model pre-
dicts composite yield strength values that are less than
those observed, which indicates that the enhancement of
increased dislocation density of the matrix is not the
fundamental composite strengthening mechanism but
that it can be one of the strengthening mechanisms.

Taya and Arsenault (1989) also proposed an elastic
model that considers reinforced fiber end stress as the
average matrix stress, but it is limited in the assumption
that neglects the stress concentration effects between
fiber ends; in addition, it does not have the capability to
be applied to elastic-plastic behavior. There have been
more attempts, such as those of Clyne (1989), Ji and
Wang (2000), Jiang et al. (1998) Starink and Syngellakis
(1999), though all of these models have shortcomings in
complicated formulation or elastically limited derivation.
Recently, Kim (2005) proposed the new shear lag (NSL)
model which considers the stress concentration effects
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between fiber ends for the behavior of the elastic fiber
and elastic matrix in order to investigate fiber volume
effects on the composite modulus.

In this paper, the CSL model is extended to the elastic-
plastic behavior as a continuum approach in order to
extend applications to metal matrix composite materials.
The main effect of stress concentration is referred to the
modulus ratio between the fiber and matrix as reported in
the previous study (Kim et al., 2005). The fiber stress,
fiber/matrix interfacial shear stress and the onset of com-
posite strain values are calculated by implementing not
only the NSL model but also the CSL and MSL models.
It is found that the NSL model is capable of correctly
predicting the values of a local fiber stress variations as
well as fiber/matrix interfacial shear stresses in the small
fiber aspect ratio regime for the elastoplastic behavior.

2. FORMULATION OF CLOSED FORM
SOLUTION FOR ELASTIC-PLASTIC STRESS
ANALYSIS

In short fiber composites, loads are not directly applied to
the fibers but are applied to the matrix and transferred to
the fibers through the fiber ends as well as through the
cylindrical surface of the fiber. A micromechanical model
is described as follows. The representative volume element
(RVE) is modeled under the assumption of perfect
bonding between the fiber and the matrix. The RVE
concept is described for an effective modeling in a
previous engineering application (Kim, 2006). The short
fibers are considered to be uniaxially aligned with the
stress applied in the axial direction of the fibers. The axial
direction is coordinated by z-axis and fiber diameter is
defined by d. Figure 1, in general, describes the elastic-
plastic model and associated stresses. The proposed
composite unit cell showing the unstrained and strained
RVE in a discontinuous composite is depicted in Figure
1(a) and (b). Hence, the fiber radius is fixed as unit
length, i.e., r;= 1, so that the aspect ratio, s(=I/ry), has the
same length as the normalized fiber distance. Slip
between the fiber and the matrix will normally take place
by an interfacial shear stress which varies along the fiber
length. The diameters of the fiber and RVE are r; and R,
and o; is fiber axial stress, respectively. Likewise, the
shear stresses of the fiber surface and arbitrary surround-
ing matrix are 7; and 7, respectively. The CSL model is
based on the following two equations (Cox, 1952).

2rrtdz=27mrtdz (or T=rT/r) )

27rtdz=nr’do; 2)

Hence, Equation (2) shows that the shear forces acting on
the fibers are equivalent to the tensile force within the
fiber. The above relationship can result in the governing
differential equation in association with the combination
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Figure 1. Schematic diagram of a single fiber composite
model: (a) RVE with fiber length of 2/ and RVE cell
length of 2L; (b) shapes of strained RVE which shows
slip mechanism at the fiber/matrix interface; (c) fiber
stress of the CSL model in elastic-plastic regime; (d)
fiber stress of the NSL model in elastic-plastic regime;
(e) fiber/matrix interfacial shear stress in elastic-plastic
regime.

of equilibrium conditions and Hooke’s law (Cox, 1952;
Kim, 1998). Based on the CSL model, the governing
differential equation of the composite is given by

d2 2
;E‘ff%wf—Efec) 3)

where E is the elastic modulus, £is the strain, and n is the
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dimensionless parameter as can be seen in Equation (4).
The subscripts f, m, and ¢ indicate fiber, matrix and
composite respectively. The parameter n is dimensionless
and is as below.

ni= 2E, @

)
LS
E{1+ v,,,)ln(vf

where v, is the Poisson's ratio of the matrix, P; is the
packing factor, and V; is the fiber volume fraction. This
has the solution of Equation (5) and (6) for the fiber axial
stress and the fiber/matrix interfacial shear stress in the
elastic fiber/matrix behavior.

SL_ _cosh(nz/r

o _Efgc{l 2cosh(ns)} ©)
su_nEgsinh(nz/r,)

w= 2cosh(ns) ©

However, it is observed that the prediction is under-
estimated because of the neglected stress intensification
at the fiber ends, as shown in Figure 1 (Clyne, 1989;
Jiang et al., 1998; Starink and Syngellakis, 1999). Hence,
fiber end stress, including stress concentration effects
should be implemented as a boundary condition. Thus,
Equation (7) has been derived for the more accurate fiber/
matrix axial interfacial condition (Kim, 2005).

c=aoE.¢e for z=xl Q)

where ¢, is a stress concentration factor (SCF) between
the fiber end and the matrix, which can be evaluated as a
square root function of the modulus ratio (Kim, 2005).
Thus, ¢ can be expressed in Equation (8) as depicted in
Figure 1(d).

= JEJE, ®)

By this formulation, the fiber axial stress and the fiber/
matrix interfacial shear stress in the elastic regime are
derived as follows.

SL_ E, ,\cosh(nz/r;)

9 ’Ef{“(A/_; l) cosh(ns) }gc ©)
st_nE (1= JETE,)sinh(nz/r;)

A= 2cosh2ns) & (10)

For the extension to the elastic-plastic regime, on the
other hand, Nardone and Prewo (1986) presented the
MSL (Modified Shear Lag) model, which aims mainly to
predict composite yield strength. However, their model is
indeed a limiting case which occurs when the plastic
front approaches the end of the fiber, so that the whole
cylindrical interface is plastic and the interface adds a
matrix yield stress contributing to the axial load transfer.
Thus, their model includes the intrinsic limitation associ-

ated with large plastic strains. Their formulation for the
fiber axial stress is as below.

o}””=a+2ag—;—z) (11)
¥

where ©; is the interfacial normal stress between fiber
ends and 7 is the interfacial shear stress between fiber
and matrix. In their study, the prediction of the fiber/
matrix interfacial shear stress is assumed to be half of the
matrix yield stress. An effort has been made to overcome
the limitation of being unable to express the elastic-
plastic behavior.

In the case of matrices, in the above, if work hardening
is neglected and if the fiber/matrix adhesion is perfect,
the shear stress will be constant in the slip regions as
shown in Figure 1(e), and equal to the shear yield stress
of the matrix ,, The slip occurs over a length ml at both
ends of the fiber, where m is a dimensionless parameter
that depends on the applied stress, although Nardone and
Prewo (1986) assumed that the slip occurs over a length /.
Using the boundary conditions 0;= 0 at z=1(1-m), o,
can be written as Equation (12). Hence, 0, is an
interfacial fiber stress at the boundary between the elastic
and plastic matrix region.

cosh(nz/r)
= + 1 =
O}C Efgc (O}x + Efgc) C()Sh(ns) (12)
where o}, is the fiber stress in the center region and § is
the reduced aspect ratio. Hence, the relationship between
5 and s is expressed as below.

§=s(1-m) (13)

Rearranging and simplifying for the surface shear forces
to be in equilibrium with the tensile forces in the fiber
yields

do_ 2%,
dz = r (14

where @, is the fiber stress in the slip region and 7,
represents the matrix shear yield stress. The interfacial
shear stress, 7, is constant at 7=1,,, Assuming that, by the
CSL model, normal stress does not transfer across the
fiber ends, it can be set by g;=0 for z=/ resulting in
Equation (15).

ot <HEe (- 2) 15)

But this result is impractical for the short fiber case.
Therefore, the boundary condition is redefined as
0,=27,, for z=l. Fiber stress in the slip region can be
derived as Equation (16) by integrating Equation (14).

Oﬁﬂﬁéﬂ(z —)+27, (16)
f

and the value of of,"* and o), " gives the following since
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Op.=0; at z=I(1-m).

ol =2ms T, 17)
0y r=2(ms+1)17,, (18)

where g;, is the fiber interfacial normal stress between the
center and the end region. Hence, the fiber stress in the
center region can be rearranged by Equations (19) and
(20) for the CSL and NSL model respectively.

£ F 6.+ (2ms rm,,—Efgc)%’(%—;) (19)
SL_ _ cosh(nz/r
A =gt [2ms+1) 7 By ] SombEL 20)

In the meantime, the MSL model is simplified without
the above process so that the matrix yield stress may
transfer to the fiber surface. This means that surrounding
matrix must be in the region of plasticity and it results in
Equation (11). The fiber stress calculated by the MSL
model is linear, as can be found in Equation (11), and is
independent of far field loading, and additionally
presumes that fracture may occur at the fiber center with
very large stress value as soon as matrix yielding occurs.
On the other hand, the fiber/matrix interfacial shear
stresses in the center region, £8P and 725, canbe
obtained by differentiating and substituting each fiber
stress in the equilibrium condition, whereas those in the
fiber end region, 7", 7.°", and 7.~ are merged to the
same value of 7,, as follows.

E,gsinh(nz/r,

ﬁCLS=”_LL—_£2 21

2cosh(ns) @D

er,, (22)

TxSLGEf(1—,/E,,,/Ef)ec?inh(nz/rf) (23)
2cosh(ns)

Ti(;':SL= ZJ,ZSL= L{_‘iSL= Tmy (24)

3. RESULTS AND DISCUSSION

The numerical results calculated by the above formula
are concurrently compared to those of the CSL, MSL,
and NSL models to investigate the stress distribution in
the fiber and fiber/matrix interface. Material properties
applied are E,=70 GPa (matrix), E=480 GPa (fiber),
v,=0.33, r,=1 (unit length), and P,=2/./3 (packing
factor). Under this condition, the fiber stresses and fiber/
matrix interfacial shear stresses are investigated by
varying the fiber aspect ratio and composite strain. The
far field composite strains are applied by £=0.0040,
£=0.0044, £=0.0048, £=0.0052 and £=0.0056 to
examine the evolution of matrix plasticity in the case of
V,=20%. Fiber aspect ratios are varied from 4 to 10 to
investigate the sensitivity of the stress values. In the end,

the composite proportional limit is also investigated in
association with the change of fiber volume fractions.

3.1. Fiber Axial Stresses
Figure 2 shows the internal fiber axial stresses while the
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Figure 2. Prediction of fiber stresses and movement of
slip points according to the increment of far field
composite strain in the case of s=4 and V;=20%.
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Figure 2. Continued.

Fiber axial stress (GPa)

matrix evolves with elastic-plastic behavior, before matrix
general yielding in the case of s=4 and V;=20%. In all
figures, the results of the NSL model fall between those
of CSL and MSL models, whereas those of MSL model
show an independent value of applied strain presenting
an upper bound of fiber axial stresses. As described in
Figure 2, the results of the CSL model obviously under-
estimate on account of neglecting fiber end stress or
discontinuity. However, those of MSL overestimate due
to the assumption that the whole cylindrical fiber/matrix
interface is plastic and fiber ends also add to the axial
load transfer when the plastic front approaches the end of
the fiber. Figure 2 depicts that the MSL and NSL models
show a great discrepancy, especially in the fiber center
region, whereas that discrepancy becomes smaller as
composite strain increases. The figures also show the
predictions for movement of slip points, according to the
increment of the far field composite strain, which indi-
cate that slip points forward to the fiber center.

3.2. Fiber/Matrix Interfacial Shear Stresses
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Figure 3. Prediction of fiber/matrix interfacial shear
stresses and movement of slip points according to the
increment of far field composite strain in the case of s=4
and V;=20%.

Figures 3(a) through (e) show the predictions for fiber/
matrix interfacial shear stresses while the matrix evolves
with elastic-plastic behavior, before matrix general yield-
ing in the case of s=4 and V;=20%. As is in the fiber
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Figure 3. Continued

stresses, the shear stress results of the NSL model also
fall between those of CSL and MSL models, whereas the
MSL model shows an independent value of applied strain
which also gives an upper bound for fiber/matrix inter-
facial shear stresses. The results of CSL and NSL models
show relatively little difference compared to the fiber axial
stresses. Figure 3 also shows prediction of movement of
slip points according to the increment of far field compo-
site strain, which indicates that slip points forward to the
fiber center.

3.3. Effects of Fiber Aspect Ratio

Figure 4, along with Figure 2(a), shows predictions for
fiber axial stresses according to the fiber aspect ratio in
the case of far field composite strain of £=0.00040 and
fiber volume fraction of 20%. Predicted values from the
CSL and NSL models show that the fiber axial stress
displays larger discrepancies as the fiber aspect ratio
becomes smaller while those of the MSL model depict a
steady value. Obviously, the fiber aspect ratio plays an
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Figure 4. Prediction of fiber stresses according to the
fiber aspect ratio in the case of far field composite strain
of £=0.40% and fiber volume fraction of 20%.

important role in the fiber axial stresses as seen in the
comparison of Figure 2(a) with Figure 4(c).

Figure 5, along with Figure 3(a), shows predictions for
fiber/matrix interfacial shear stresses according to fiber
aspect ratio in the case of far field composite strain of
£=0.0040 and fiber volume fraction of 20%. The results
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Figure 5. Prediction of fiber/matrix interfacial shear
stresses according to the fiber aspect ratio in the case of
far field composite strain of £=0.40% and fiber volume
fraction of 20%.

of the CSL and NSL models show relatively little differ-
ence compared to the fiber axial stresses while those of
the MSL model depict a steady value. The fiber aspect
ratio plays a relatively less important role in the incre-
ment of fiber/matrix interfacial shear stresses, as seen in
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Figure 6. Prediction of composite strain for proportional
limit according to the fiber aspect ratio in the case of fiber
volume fraction of 10%, 20%, 30%, 40%, and 50%.

the comparison of Figure 3(a) with Figure 5(c).

3.4. Composite Strain for Proportional Limit

The onset of slip in the matrix is determined analytically
using the present model and is also compared with the
conventional model. Figure 6 shows predictions of com-
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Figure 6. Continued

posite strain for the proportional limit according to the
fiber aspect ratio in the case of fiber volume fraction of
10%, 20%, 30%, 40% and 50% respectively. Composite
strains for the proportional limit of the CSL model is far
lower than those of the NSL model in all cases. The
rationale is that the NSL model takes into account the
stress concentration effect at the fiber ends while the CSL
model relies on shear stress in the whole, so that the CSL
model triggers local yielding at an earlier stage than the
NSL model. Composite strains for the proportional limit
are also a strong function of fiber aspect ratio though
saturation occurs at a fiber aspect ratio of 10. On the other
hand, the fiber volume fraction plays an important role in
plasticity evolution. In Figure 6, the range of composite
strains for the proportional limit of fiber volume fraction

10% is shown as NSL model (0.42%~0.34%) and CSL .

model (0.36%~0.27%) while those of fiber volume
fraction 10% are shown as NSL model (0.29%~0.26%)
and CSL model (0.23%~0.20%) in the case of a short
fiber like s=4. Accordingly, the decrease in the NSL
model is nearly 30% (from 0.42% to 0.34%) and that of
the CSL model is nearly 35% (from 0.36% to 0.23%)
respectively. This phenomenon indicates that the locali-

zed matrix yielding is affected significantly by the fiber
volume fraction as well as the fiber aspect ratio.

4. CONCLUSIONS

The shear lag model is extended to the elastic-plastic
behavior as a continuum approach in order to apply it to
metal matrix composite materials. Stress concentration
effects are taken into account in order to derive a closed
form solution. The present model (NSL) is compared to
the conventional shear lag model (CSL) as well as the
modified shear lag model (MSL). The results of the NSL
model always fall between that of the CSL and MSL
models. Some important conclusions investigated by the
three models are as follows.

(1) The results of the NSL model fall between those of
the CSL and MSL model, whereas those of the MSL
model show an independent value for applied strain
presenting an upper bound of fiber axial stresses.

(2) The fiber axial stress of the NSL model shows a great
difference from that of the CSL and MSL models
and is a strong function of the fiber aspect ratio.

(3) The fiber/matrix interfacial shear stresses of CSL and
NSL show relatively little difference compared to the
fiber axial stresses.

(4) Localized matrix yielding is affected significantly by
the fiber volume fraction as well as the fiber aspect
ratio.

(5) The slip points move forward to the fiber center
region as the far field strain increases.
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