• Title/Summary/Keyword: Short chain fatty acid

Search Result 191, Processing Time 0.039 seconds

Effect of Livestock Wastewater Addition on Hydrogen and Organic Acids Production Using Food Waste (음식물쓰레기 이용 혐기 산발효에 의한 수소 및 유기산 생산: 축산폐수 첨가 효과)

  • JANG, SUJIN;KIM, DONGHOON;LEE, MOKWON;NA, JEONGGEOL;KIM, MISUN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • Organic wastes such as food waste (FW), livestock wastewater (LW), and sewage sludge (SWS) can produce hydrogen ($H_2$) by anaerobic acid fermentation. Expecially, FW which has high carbohydrate content produces $H_2$ and short chain fatty acids by indigenous $H_2$ producing microorganisms without adding inoculum, however $H_2$ production rate (HPR) and yield have to be improved to use a commercially available technology. In this study, LW was mixed to FW in different ratios (on chemical oxygen demand (COD) basis) as an auxiliary substrate. The mixture of FW and LW was pretreated at pH 2 using 6 N HCl for 12 h and then fermented at $37^{\circ}C$ for 28 h. HPR of FW, 254 mL $H_2/L/h$, was increased with the addition of LW, however, mixing ratio of LW to FW was reversely related to HPR, exhibiting HPR of 737, 733, 599, and 389 mL $H_2/L/h$ at the ratio of FW:LW=10:1, 10:2, 10:3, and 10:4 on COD basis, respectively. Maximum HPR and $H_2$ production yield of 737 $H_2/L/h$ and 1.74 mol $H_2/mol$ hexoseadded were obtained respectively at the ratio of FW:LW=10:1. Butyrate was the main organic acid produced and propionate was not detected throughout the experiment.

Changes of Some Physicochemical Properties of Yoghurt made from ${\beta}$-Galactosidase-treated Commercial Milks (${\beta}$-Galactosidase 처리 시유로 제조한 요구르트의 이화학적 성분 변화)

  • Lee, In-Seon;Kim, Sang-Hee;Ha, Jae-Ho;Kang, Kook-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.795-799
    • /
    • 1989
  • This study was carried out to hydrolyze lactose in commercial milk by ${\beta}-galactosidase$ from Kluyveromyces fragilis and to compare some physicochemical properties of yoghurts made from control and lactase-treated commercial milks. Quantitative analysis of sugars was performed by gas liquid chromatograph (GLC) on trimethylsilyl (TMS) derivatives. In commercial milk, 94.6% of lactose was hydrolyzed after 2 hours incubation at $40^{\circ}C$ with 6.0 units/ml of ${\beta}-galactosidase$. pH, titratable acidity and viable cell number of yoghurt made from lactase-hydrolyzed (LH) commercial milk were 4.1, 1.04% and $6.5{\times}10^8/ml$ of Str. thermophilus, $8.9{\times}10^8/ml$ of L. bulgaricus after 8 hours incubation at $40^{\circ}C$, respectively, The total contents of amino acid were 2.63% in control and 2.19%. in LH yoghurt. The total contents of free amino acid were 26.95 mg% in control and 17.55mg% in LH yoghurt. Analysis of free fatty acids resulted in that the contents of short chain fatty acids in LH yoghurt were a little higher than those in control. Both in control and LH yoghurt, the palmitic acid content was highest and that was followed by oleic and myristic acid.

  • PDF

Use of Cellulose and Recent Research into Butyrate (섬유소의 이용과 butyrate의 최근 연구)

  • Yeo, Tae Jong;Choi, In Soon;Cho, Kwang Keun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1571-1586
    • /
    • 2012
  • On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).

Development of Phytosterol Ester-added Cheddar Cheese for Lowering Blood Cholesterol

  • Kwak, H.S.;Ahn, H.J.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.267-276
    • /
    • 2005
  • This study was carried out to investigate the effect of phytosterol ester addition on lowering blood cholesterol in cholesterol-reduced Cheddar cheese. For cholesterol removal, separated cream was treated with 10% ${\beta}$-cyclodextrin at 800 rpm, then blended with remaining skim milk and homogenized with 1,000 psi at $70^{\circ}C$. Experimental cheeses were manufactured by five different levels of phytosterol addition. After the cholesterol reduction process by ;${\beta}$-cyclodextrin, the cholesterol removal rate was in the range of 91.0 to 92.1%. Amount of short-chain free fatty acid and free amino acids increased with an increase of phytosterol ester, and those were significantly different from that of control in all ripening periods. All rheological properties also increased with an increase of phytosterol ester during ripening period. In sensory analysis, the scores of rancid, bitterness Cheddar flavor and off-flavor intensities increased significantly, while texture was decreased during ripening in phytosterol ester-added groups. Total blood cholesterol was reduced by 18% when rats were fed Cheddar cheese treated with 8% phytosterol. The present study indicated that phytosterol ester addition resulted in a profound lowering effect of blood with cholesterol-reduced Cheddar cheese.

프락토 올리고당과 프락토 올리고당을 함유한 스폰지 케?이 흰쥐의 혈청지질과 장기능 및 단쇄지방산 생성에 미치는 효과

  • 이선영;조정화;이경애
    • Journal of Nutrition and Health
    • /
    • v.36 no.4
    • /
    • pp.344-351
    • /
    • 2003
  • The purpose of this study was to elucidate effects of fructooligosaccharide on gastrointestinal tract and blood lipids of rats when this was supplied as purchased condition or oligosaccharide containing sponge cake. Male Sprague-Dawley rats were assigned to one of 3 treatments 1) control diet 2) 7.5% fructooligosaccharide containing diet (FOS diet) 3) lyophilized sponge cake powder containing diet (FOS-C diet). The sponge cake was made with fractooligosaccharide which replaced 40% of its surose, and the final concentration of fructooligosaccharide in FOS-C diet was 7.5%. Cecal and fecal water contents, amount of cecal content, and cecal wall weight were higher from fructooligosaccharide consumption, whereas total gut transit time was longer in rats consuming fructooligosaccharide compared with those fed control diet. Cecal and fecal pH were lower in FOS and FOS-C groups than in control group. Total cecal SCFA pools were higher from ingesting fructooligosaccharide containing diets compared with control diet. Serum triglyceride levels were lower in rats fed FOS and FOS-C diet than those fed control diet, while serum cholesterol levels were unaffected by treatment. Therefore the effects of fructooligosaccharide in sponge cake on serum lipids and gastrointestinal tract were similar to those of intact fructooligosaccharide. Also, adding 7.5% of FOS accompanied diarrhea symptom which suggests some precaution are needed when using FOS.

Physicochemical, Microbial, and Sensory Properties of Queso Blanco Cheese Supplemented with Powdered Microcapsules of Tomato Extracts

  • Jeong, Hyeon-Ju;Lee, Yun-Kyung;Ganesan, Palanivel;Kwak, Hae-Soo;Chang, Yoon Hyuk
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.342-350
    • /
    • 2017
  • The present study examined the physical, chemical, microbial, and sensory characteristics of Queso Blanco cheese supplemented with powdered microcapsules containing tomato extracts (0.5-2.0%) during storage at $7^{\circ}C$ for 60 d. The lactic acid bacterial count and lycopene concentrations in Queso Blanco cheese supplemented with powdered microcapsules were significantly higher than those of the control. In a texture analysis, the gumminess, chewiness, and hardness values for Queso Blanco cheese were significantly higher with increasing concentrations of the powdered microcapsules containing tomato extracts. Total short-chain fatty acids in Queso Blanco cheese supplemented with powdered microcapsules containing tomato extracts were not significantly altered compared to the control. Sensory evaluation scores for the yellowness, tomato taste, and firmness of Queso Blanco cheese were significantly higher after supplementation with powdered microcapsules containing tomato extracts.

가교화 ${\beta}-Cyclodextrin$ 을 이용한 콜레스테롤 제거 크림치즈의 연구

  • Han, Eun-Mi;Kim, Song-Hui;An, Jeong-Jwa;Gwak, Hae-Su
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.358-362
    • /
    • 2004
  • 본 연구에서는 가교화 ${\beta}-CD$로 크림치즈의 콜레스테롤을 효과적으로 제거하는 실험을 수행 하였으며, 크림치즈의 이화학적 변화와 관능적 특성을 살펴보았다. 크림치즈를 만들기 위한 유지방 함량 36%의 크림을 가교화 ${\beta}-CD$로 처리 시 콜레스테롤 제거 최적 조건은 가교화 ${\beta}-CD$ 10%를 첨가해 교반온도 $20^{\circ}C$, 교반시간 30분, 교반속도 800rpm으로 실험한 결과 콜레스테롤 제거율이 평균 82.0%로 나타났다. 가교화 ${\beta}-CD$처리 크림치즈는 short-chain fatty acid의 경우 저장 기간이 지남에 따라 control과 powder ${\beta}-CD$ 처리한 크림치즈에 비해 저급 지방산 생성에 변화가 거의 없고, 쓴맛을 내는 아미노산의 경우 저장 기간 동안 control과 powder ${\beta}-CD$처리 크림치즈에 비해 생산량이 현저하게 적었다. 또한 가교화 ${\beta}-CD$처리 크림치즈의 조직검사에서 다른 항목에서보다 저장 기간 동안 응집성이 변함이 없으며 그 수치가 높게 평가되었다. 관능검사 결과, 가교화 ${\beta}-CD$처리 크림치즈는 저장 기간 동안 쓴맛의 증가가 거의 없었고 전체적인 기호도 또한 높았다. 위 실험 결과에 따르면, 가교화 ${\beta}-CD$ 사용결과 cholesterol 제거율이 높으며, 제품에 적용시 재활용이 가능하고 품질이 향상되므로 이를 유가공 산업에 활용이 가능할 것으로 기대된다.

  • PDF

Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells

  • Tran, Na Ly;Lee, In Kyu;Choi, Jungkyun;Kim, Sang-Heon;Oh, Seung Ja
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.431-436
    • /
    • 2021
  • In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.

Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: a review

  • Neeraja, Recharla;Sungkwon, Park;Minji, Kim;Byeonghyeon, Kim;Jin Young, Jeong
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.640-653
    • /
    • 2022
  • Deoxynivalenol (DON) is the most common mycotoxin contaminant of cereal-based food and animal feed. The toxicity of DON is very low compared to that of other toxins; however, the most prominent signs of DON exposure include inappetence and body weight loss, which causes considerable economic losses in the livestock industry. This review summarizes critical studies on biological DON mycotoxin mitigation strategies and the respective in vitro and in vivo intestinal effects. Focus areas include growth performance, gut health in terms of intestinal histomorphology, epithelial barrier functions, the intestinal immune system and microflora, and short-chain fatty acid production in the intestines. In addition, DON detoxification and modulation of these parameters, through biological supplements, are discussed. Biological detoxification of DON using microorganisms can attenuate DON toxicity by modulating gut microbiota and improving gut health with or without influencing the growth performance of pigs. However, the use of microorganisms as feed additives to livestock for mycotoxins detoxification needs more research before commercial use.

Potential Anti-Allergy and Immunomodulatory Properties of Lactococcus lactis LB 1022 Observed In Vitro and in an Atopic Dermatitis Mouse Model

  • Jihye Baek;Jong-Hwa Kim;Wonyong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.823-830
    • /
    • 2023
  • Lactococcus lactis is a lactic acid bacterium and used in the dairy food industry. The ameliorating effects of Lactobacillus species on atopic dermatitis (AD) have been extensively studied, but the specific effect of L. lactis strains has not yet been investigated. In this study, the efficacy of L. lactis LB 1022, isolated from natural cheese, was evaluated using RAW 264.7, HMC-1 and HaCaT cell lines and an ovalbumin-sensitized AD mouse model. L. lactis LB 1022 exhibited nitric oxide suppression and anti-allergy and anti-inflammatory activity in vitro. Oral administration of L. lactis LB 1022 to AD mice significantly reduced the levels of IgE, mast cells, and eosinophils, and a range of T cell-mediated T helper Th1, Th2, and Th17-type cytokines under interleukin (IL)-10, transforming growth factor-β (TGF-β), thymus and activation-regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP). In addition, L. lactis LB 1022 treatment increased the concentration of short-chain fatty acids. Overall, L. lactis LB 1022 significantly modulated AD-like symptoms by altering metabolites and the immune response, illustrating its potential as candidate for use in functional food supplements to alleviate AD.