DOI QR코드

DOI QR Code

Use of Cellulose and Recent Research into Butyrate

섬유소의 이용과 butyrate의 최근 연구

  • Yeo, Tae Jong (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Choi, In Soon (Department of Biological Science, Silla University) ;
  • Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
  • 여태종 (경남과기대 동물소재공학과) ;
  • 최인순 (신라대학교 생물학과) ;
  • 조광근 (경남과기대 동물소재공학과)
  • Received : 2012.10.04
  • Accepted : 2012.10.19
  • Published : 2012.11.30

Abstract

On earth, there are about 5,400 kinds of mammals, of which about 1,000 kinds are herbivores. Among herbivores, about 250 kinds are known to be ruminants. As for cattle and sheep, which are ruminants, fermentation takes places mainly in their rumen; in contrast, for pigs and men, which are non-ruminants, fermentation takes place mainly in their caecum, colon, and rectum. As for the kind and dominance of rumen microorganisms, Bacteroidetes account for 51% and Firmicutes for 43%. As for the dominance of the large intestine microorganisms in men, Firmicutes account for 65% and Bacteroidetes for 25%. Cell wall components are decomposed by microorganisms, and short chain fatty acids (SCFAs) are generated through fermentation; the ratio of acetate, propionate, and butyrate generate is 60:25:15. Butyrate absorbed through the primary butyrate transporter MCT1 (mono carboxylate transports-1) in the intestines activates such SCFA receptors as GPR43 and GPR41. Butyrate has a strong anti-tumorigenic function. Butyrate is characterized by the fact that it has an effect on many cancer cells, contributes to the coordination of functions in the cells, and induces cancer apoptosis. Butyrate activates caspase but inhibits the activity of HDAC (histone deacetylase), so as to induce apoptosis. In addition, it increases p53 expression, so as to induce cell cycle arrest and apoptosis. Anti-inflammation actions of SCFA include the reduction of IL-8 expression in intestinal epithelial cells, the inhibition of NO synthesis, and the restraint of the activity of NF-${\kappa}B$ (nuclear factor ${\kappa}B$), so as to suppress the occurrence of cancers caused by inflammation. Butyrate plays an important role in maintaining physiological functions of intestinal mucous membranes and is used as a cure for inflammatory bowel disease (IBD).

지구상에는 약 5,400여 종의 포유동물이 있고 그 중 약 1,000여 종은 풀을 뜯어 먹고 사는 초식동물이다. 초식동물 중에서 약 250여 종이 반추동물로 알려져 있다. 반추동물인 소와 양은 반추위에서 주로 발효가 일어나지만 비반추동물인 돼지와 사람은 맹장과 결장, 직장에서 주로 발효가 일어난다. 반추위 미생물의 종류와 우점도 Bacteroidetes 51%, Firmicutes 43% 존재하며, 사람의 대장미생물의 우점도Firmicutes 65%, Bacteroidetes 25%로 존재한다. 풀의 세포벽 구성성분은 미생물에 의해 분해, 발효에 의해 SCFA (short chain fatty acid)를 생성하게 되고 acetate, propionate, butyrate 생성비율은 60:25:15이다. 장내 primary butyrate transporter인 MCT1(monocarboxylatetransports-1)에 의해서 흡수된 butyrate는 SCFA receptor GPR43과 GPR41을 활성화시킨다. Butyrate는 강력한 anti-tumorigenic 기능을 가지고 있다. Butyrate는 다양한 cancer cell에 효과를 나타내며 세포내의 기능 조절에 기여하고, 암세포사멸을 유도하는 특성이 있다. Butyrate는 caspase의 활성화, HDAC (histone deacetylase) 활성을 억제하여apoptosis를 유도하고, p53 발현증가로 cell cycle arrest와 apoptosis를 유도한다. SCFA의 항 염증작용으로는 장 상피세포에서 IL-8 발현 감소, NO합성과 NF-${\kappa}B$ (nuclear factor ${\kappa}B$)의 활성을 억제하여 염증으로 인한 암 발생을 억제한다. Butyrate는 장 점막의 생리적 기능을 유지하는데 중요한 역할을 하며 IBD (inflammatory bowel disease) 치료법으로 이용되고 있다.

Keywords

References

  1. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Dore, J., Antolin, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Merieux, A., Melo Minardi, R., M'Rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D. and Bork, P. 2011. Enterotypes of the human gut microbiome. Nature 473, 174-180. https://doi.org/10.1038/nature09944
  2. Avivi-Green, C., Polak-Charcon, S., Madar, Z. and Schwartz, B. 2002. Different molecular events account for butyrate-in duced apoptosis in two human colon cancer cell lines. J. Nutr. 132, 1812-1818.
  3. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. 2005. Host-bacterial mutualism in the human intestine. Science 307, 1915-1920. https://doi.org/10.1126/science.1104816
  4. Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567-590.
  5. Berni Canani, R., Di Costanzo, M. and Leone, L. 2012. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin. Epigenetics 4, 4. https://doi.org/10.1186/1868-7083-4-4
  6. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. 2003. The orphan G protein- coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
  7. Buda, A., Qualtrough, D., Jepson, M. A., Martines, D., Paraskeva, C. and Pignatelli, M. 2003. Butyrate downregulates alpha2beta1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut 52, 729-734. https://doi.org/10.1136/gut.52.5.729
  8. Cho, K. K., Ha, J. K., Choy, Y. H., Han, I. K., Kim, H. S. 1989. Effects of various buffers on rumen pH, VFA, and blood PCV in sheep. Kor. J. Anim. Feed 13, 156-160.
  9. Cho, K. K., Ha, J. K., Choy, Y. H., Han, I. K. and Kim, H. S. 1989. Effects of various buffer sources and their levels in the diet on milk production, blood measures and nutrient digestibilities of Holstein dairy cows. Kor. J. Anim. Feed 13, 161-167.
  10. Cho, K. K., Kho, Y. J., Lee, D. Y., Ha, S. H., Yin, Y. H., Kim, J. Y., Kim, C. W., Baik, M. G. and Choi, Y. J. 1998. Apoptosis, programmed cell death. Korean J. Dairy Sci. 20, 289-310.
  11. Cho, K. K., Kim, S. C., Woo, J. H., Bok, J. D. and Choi, Y. J. 2000. Molecular cloning and expression of a novel family a endoglucanase gene from Fibrobacter succinogenes S85 in Escherichia coli. Enzyme Microb. Technol. 27, 475-481. https://doi.org/10.1016/S0141-0229(00)00256-8
  12. Church, D. C. 1979. Digestive physiology and nutrition of ruminants. Oxford press. Portland Oregon.
  13. Church, D. C. 1984. Livestock feeds and feedings. Q & B Books Inc. Corvallis. Oregon.
  14. Clarke, J. M., Young, G. P., Topping, D. L., Bird, A. R., Cobiac, L., Scherer, B. L., Winkler, J. G. and Lockett, T. J. 2012. Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats. Carcinogenesis 33, 197-202. https://doi.org/10.1093/carcin/bgr254
  15. Daly, K. and Shirazi-Beechey, S. P. 2006. Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol. 25, 49-62. https://doi.org/10.1089/dna.2006.25.49
  16. Dashwood, R. H. and Ho, E. 2007. Dietary histone deacetylase inhibitors: from cells to mice to man. Semin. Cancer Biol. 17, 363-369. https://doi.org/10.1016/j.semcancer.2007.04.001
  17. Dave, M., Higgins, P. D., Middha, S. and Rioux, K. P. 2012. The human gut microbiome: current knowledge, challenges, and future directions. Transl. Res. 4, 246-257.
  18. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccini, G. and Lionetti, P. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691-14696. https://doi.org/10.1073/pnas.1005963107
  19. Dethlefsen, L., Eckburg, P. B., Bik, E. M. and Relman, D. A. 2006. Assembly of the human intestinal microbiota. Trends. Ecol. Evol. 21, 517-523. https://doi.org/10.1016/j.tree.2006.06.013
  20. Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M. L., Forssberg, H. and Pettersson, S. 2011. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108, 3047-3052. https://doi.org/10.1073/pnas.1010529108
  21. DiBaise, J. K., Zhang, H., Crowell, M. D., Krajmalnik-Brown, R., Decker, G. A., Rittmann, B. E. and Rittmann, B. E. 2008. Gut microbiota and its possible relationship with obesity. Mayo. Clin. Proc. 83, 460-469. https://doi.org/10.4065/83.4.460
  22. Domokos, M., Jakus, J., Szeker, K., Csizinszky, R., Csiko, G., Neogrady, Z., Csordas, A. and Galfi, P. 2010. Butyrate-induced cell death and differentiation are associated with distinct patterns of ROS in HT29-derived human colon cancer cells. Dig. Dis. Sci. 55, 920-930. https://doi.org/10.1007/s10620-009-0820-6
  23. Duchmann, R., May, E., Heike, M., Knolle, P., Neurath, M. and Meyer zum Buschenfelde, K. H. 1999. T cell specificity and cross reactivity towards Enterobacteria, Bacteroides, Bifidobacterium, and antigens from resident intestinal flora in humans. Gut 44, 812-818. https://doi.org/10.1136/gut.44.6.812
  24. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. and Relman, D. A. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635-1638. https://doi.org/10.1126/science.1110591
  25. Engelbrecht, A. M., Toit-Kohn, J. L., Ellis, B., Thomas, M., Nell, T. and Smith, R. 2008. Differential induction of apoptosis and inhibition of the Pi3-kinase pathway by saturated, monounsaturated and polyunsaturated fatty acids in a colon cancer cell model. Apoptosis 13, 1368-1377. https://doi.org/10.1007/s10495-008-0260-3
  26. Fauser, J. K., Prisciandaro, L. D., Cummins, A. G. and Howarth, G. S. 2011. Fatty acids as potential adjunctive colorectal chemotherapeutic agents. Cancer Bio. Ther. 11, 724-731. https://doi.org/10.4161/cbt.11.8.15281
  27. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. and White, B. A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121-131. https://doi.org/10.1038/nrmicro1817
  28. Flint, H. J., Duncan, S. H., Scott, K. P. and Louis, P. 2007. Interactions and competition within the microbial commmono- gastricy of the human colon: links between diet and health. Environ. Microbiol. 9, 1101-1111. https://doi.org/10.1111/j.1462-2920.2007.01281.x
  29. Flint, H. J., Martin, J., McPherson, C. A., Daniel, A. S. and Zhang, J. X. 1993. A bifunctional enzyme, with separate xylanase and beta (1, 3-1, 4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J . Bacteriol. 175, 2943-2951.
  30. Fung, K. Y., Brierley, G. V., Henderson, S., Hoffmann, P., McColl, S. R., Lockett, T., Head, R. and Cosgrove, L. 2011. Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response. J. Proteome Res. 10, 1860-1869. https://doi.org/10.1021/pr1011125
  31. Fung, K. Y., Cosgrove, L., Lockett, T., Head, R. and Topping, D. L. 2012. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 5, 820-831.
  32. Fung, K. Y., Lewanowitsch, T., Henderson, S. T., Priebe, I., Hoffmann, P., McColl, S. R., Lockett, T., Head, R. and Cosgrove, L. J. 2009. Proteomic analysis of butyrate effects and loss of butyrate sensitivity in HT29 colorectal cancer cells. J. Proteome. Res. 8, 1220-1227. https://doi.org/10.1021/pr8009929
  33. Gope, R. and Gope, M. L. 1993. Effect of sodium butyrate on the expression of retinoblastoma (RB1) and P53 gene and phosphorylation of retinoblastoma protein in human colon tumor cell line HT29. Cell Mol. Biol. 39, 589-597.
  34. Hallert, C., Bjorck, I., Nyman, M., Pousette, A., Granno, C. and Svensson, H. 2003. Increasing fecal butyrate in ulcerative colitis patients by diet: controlled pilot study. Inflamm. Bowel. Dis. 9, 116-121. https://doi.org/10.1097/00054725-200303000-00005
  35. Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J. and Brummer, R. J. 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104-119.
  36. Hinnebusch, B. F., Meng, S., Wu, J. T., Archer, S. Y. and Hodin, R. A. 2002. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr. 132, 1012-1017.
  37. Hofmanova, J., Vaculova, A., Koubkova, Z., Hyzd'alova, M. and Kozubik, A. 2009. Human fetal colon cells and colon cancer cells respond differently to butyrate and PUFAs. Mol. Nutr. Food Res. 53 Suppl 1, 102-113. https://doi.org/10.1002/mnfr.200800175
  38. Hooper, L. V., Midtvedt, T. and Gordon, J. I. 2002. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22, 283-307. https://doi.org/10.1146/annurev.nutr.22.011602.092259
  39. Hu, S., Dong, T. S., Dalal, S. R., Wu, F., Bissonnette, M., Kwon, J. H. and Chang, E. B. 2011. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One 6, 16221.
  40. Huang, N., Katz, J. P., Martin, D. R. and Wu, G. D. 1997. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine 9, 27-36. https://doi.org/10.1006/cyto.1996.0132
  41. Hyzd'alova, M., Hofmanova, J., Pachernik, J., Vaculova, A. and Kozubik, A. 2008. The interaction of butyrate with TNF-Alpha during differentiation and apoptosis of colon epithelial cells: role of NF-kB activation. Cytokine 44, 33-43. https://doi.org/10.1016/j.cyto.2008.06.003
  42. Iacomino, G., Tecce, M. F., Grimaldi, C., Tosto, M. and Russo, G. L. 2001. Transcriptional response of a human colon adenocarcinoma cell line to sodium butyrate. Biochem. Biophys. Res. Commun. 285, 1280-1289. https://doi.org/10.1006/bbrc.2001.5323
  43. Itoh, Y., Kawamata, Y., Harada, M., Kobayashi, M., Fujii, R., Fukusumi, S., Ogi, K., Hosoya, M., Tanaka, Y., Uejima,H., Tanaka, H., Maruyama, M., Satoh, R., Okubo, S., Kizawa, H., Komatsu, H., Matsumura, F., Noguchi, Y., Shinohara, T., Hinuma, S., Fujisawa, Y. and Fujino, M. 2003. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422, 173-176. https://doi.org/10.1038/nature01478
  44. Jami, E. and Mizrahi, I. 2012. Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7, 33306. https://doi.org/10.1371/journal.pone.0033306
  45. Janson, W., Brandner, G. and Siegel, J. 1997. Butyrate modulates DNA-damage-induced p53 response by induction of p53-independent differentiation and apoptosis. Oncogene 15, 1395-1406. https://doi.org/10.1038/sj.onc.1201304
  46. Karaki, S., Mitsui, R., Hayashi, H., Kato, I., Sugiya, H., Iwanaga, T., Furness, J. B. and Kuwahara, A. 2006. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324. 353-360. https://doi.org/10.1007/s00441-005-0140-x
  47. Karaki, S., Tazoe, H., Hayashi, H., Kashiwabara, H., Tooyama, K., Suzuki, Y. and Kuwahara, A. 2008. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135-142. https://doi.org/10.1007/s10735-007-9145-y
  48. Kato, T., Kolenic, N. and Pardini, R. S. 2007. Docosahexaenoic acid (DHA), a primary tumor suppressive omega-3 fatty acid, inhibits growth of colorectal cancer independent of p53 mutational status. Nutr. Cancer 58, 178-187. https://doi.org/10.1080/01635580701328362
  49. Key, T. J., Appleby, P. N., Spencer, E. A., Travis, R. C., Roddam, A. W. and Allen, N. En. 2009. Cancer incidence in vegetarians: results from the european prospective Investigation into cancer and nutrition (EPIC-Oxford). Am. J. Clin. Nutr. 89, 1620-1626. https://doi.org/10.3945/ajcn.2009.26736M
  50. Kim, E. J., Holthuizen, P. E., Park, H. S., Ha, Y. L., Jung, K. C. and Park, J. H. 2002. Trans-10, cis-12-conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. Am. J. Physiol. Gastrointest Liver Physiol. 283, 357-367.
  51. Kim, H. J. and Bae, S. C. 2011. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti- cancer drugs. Am. J. Transl. Res. 3, 166-179.
  52. Lazarova, D. L., Bordonaro, M., Carbone, R. and Sartorelli, A. C. 2004. Linear relationship between Wnt activity levels and apoptosis in colorectal carcinoma cells exposed to butyrate. Int. J. Cancer 110, 523-531. https://doi.org/10.1002/ijc.20152
  53. Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., Parmentier, M. and Detheux, M. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481-25489. https://doi.org/10.1074/jbc.M301403200
  54. Levy, P., Robin, H., Bertrand, F., Kornprobst, M. and Capeau, J. 2003. Butyrate-treated colonic Caco-2 cells exhibit defective integrin-mediated signaling together with increased apoptosis and differentiation. J. Cell Physiol. 197, 336-347. https://doi.org/10.1002/jcp.10345
  55. Ley, R. E., Turnbaugh, P. J., Klein, S. and Gordon, J. I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. https://doi.org/10.1038/4441022a
  56. Litvak, D. A., Evers, B. M., Hwang, K. O., Hellmich, M. R., Ko, T. C. and Townsend, C. M., Jr. 1998. Butyrate-induced differentiation of Caco-2 cells is associated with apoptosis and early induction of p21waf1/Cip1 and p27kip1. Surgery 124, 161-170. https://doi.org/10.1016/S0039-6060(98)70116-3
  57. Lopez de Silanes, I., Olmo, N., Turnay, J., Gonzalez de Buitrago, G., Perez-Ramos, P., Guzman-Aranguez, A., Garcia-Diez, M., Lecona, E., Gorospe, M. and Lizarbe, M. A. 2004. Acquisition of resistance to butyrate enhances survival after stress and induces malignancy of human colon carcinoma cells. Cancer Res. 64, 4593-4600. https://doi.org/10.1158/0008-5472.CAN-04-0711
  58. Macfarlane, G. T. and Englyst, H. N. 1986. Englyst, Starch utilization by the human large intestinal microflora. J. Appl. Bacteriol. 60, 195-201. https://doi.org/10.1111/j.1365-2672.1986.tb01073.x
  59. Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
  60. McIntyre, A., Gibson, P. R. and Young, G. P. 1993. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34, 386-391. https://doi.org/10.1136/gut.34.3.386
  61. Morrison, M. and Miron, J. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins. FEMS Microbiol. Lett. 185, 109-115. https://doi.org/10.1111/j.1574-6968.2000.tb09047.x
  62. Nano, J. L., Nobili, C., Girard-Pipau, F. and Rampal, P. 2003. Effects of fatty acids on the growth of Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids 69, 207-215. https://doi.org/10.1016/S0952-3278(03)00083-8
  63. Narayanan, B. A., Narayanan, N. K. and Reddy, B. S. 2001. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int. J. Oncol. 19, 1255-1262.
  64. Natoni, F., Diolordi, L., Santoni, C. and Gilardini Montani, M. S. 2005. Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim. Biophys. Acta. 1745, 318-329. https://doi.org/10.1016/j.bbamcr.2005.07.003
  65. Nilsson, N. E., Kotarsky, K., Owman, C. and Olde, B. 2003. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047-1052. https://doi.org/10.1016/S0006-291X(03)00488-1
  66. Olmo, N., Turnay, J., Perez-Ramos, P., Lecona, E., Barrasa, J. I., Lopez de Silanes, I. and Lizarbe, M. A. 2007. In vitro models for the study of the effect of butyrate on human colon adenocarcinoma cells. Toxicol. In Vitro 21, 262-270. https://doi.org/10.1016/j.tiv.2006.09.011
  67. Pajak, B., Gajkowska, B. and Orzechowski, A. 2009. Sodium butyrate sensitizes human colon adenocarcinoma Colo 205 cells to both intrinsic and TNF-Alpha-dependent extrinsic apoptosis. Apoptosis 14, 203-217. https://doi.org/10.1007/s10495-008-0291-9
  68. Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. and Flint, H. J. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133-139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
  69. Rincon, M. T., Cepeljnik, T., Martin, J. C., Lamed, R., Barak, Y., Bayer, E. A. and Flint, H. J. 2005. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J. Bacteriol. 187, 7569-7578. https://doi.org/10.1128/JB.187.22.7569-7578.2005
  70. Roy, M. J., Dionne, S., Marx, G., Qureshi, I., Sarma, D., Levy, E. and Seidman, E. G. 2009. In Vitro studies on the inhibition of colon cancer by butyrate and carnitine. Nutrition 25, 1193-1201. https://doi.org/10.1016/j.nut.2009.04.008
  71. Ruemmele, F. M., Dionne, S., Qureshi, I., Sarma, D. S., Levy, E. and Seidman, E. G. 1999. Butyrate mediates Caco-2 cell apoptosis via up-regulation of pro-apoptotic BAK and inducing caspase-3 mediated cleavage of poly-(ADP-ribose) polymerase (PARP). Apoptosis Differ. 6, 729-735.
  72. Ruemmele, F. M., Schwartz, S., Seidman, E. G., Dionne, S., Levy, E. and Lentze, M. J. 2003. Butyrate induced Caco-2 cell apoptosis is mediated via the mitochondrial pathway. Gut 52, 194-100. https://doi.org/10.1136/gut.52.2.194
  73. Sacks Sacks, F. M., Marais, G. E., Handysides, G., Salazar, J., Miller, L., Foster, J. M., Rosner, B. and Kass, E. H. 1984. Lack of an effect of dietary saturated fat and cholesterol on blood pressure in normotensives. Hypertension 6, 193-198.
  74. Schonberg, S. A., Lundemo, A. G., Fladvad, T., Holmgren, K., Bremseth, H., Nilsen, A., Gederaas, O., Tvedt, K. E., Egeberg, K. W. and Krokan, H. E. 2006. Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. FEBS J. 273, 2749-2765. https://doi.org/10.1111/j.1742-4658.2006.05292.x
  75. Serpa, J., Caiado, F., Carvalho, T., Torre, C., Goncalves, L. G., Casalou, C., Lamosa, P., Rodrigues, M., Zhu, Z., Lam, E. W. and Dias, S. 2010. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J. Biol. Chem. 285, 39211-39223. https://doi.org/10.1074/jbc.M110.156026
  76. Sina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B., Chalaris, A., Scheller, J., Rehmann, A., Franke, A., Ott, S., Hasler, R., Nikolaus, S., Folsch, U. R., Rose-John, S., Jiang, H. P., Li, J., Schreiber, S. and Rosenstiel, P. 2009. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514-7522. https://doi.org/10.4049/jimmunol.0900063
  77. Stempelj, M., Kedinger, M., Augenlicht, L. and Klampfer, L. 2007. Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. J. Biol. Chem. 282, 9797-9804. https://doi.org/10.1074/jbc.M609426200
  78. Tajima, K., Aminov, RI. T., Ogata, K., Nakamura, M., Matsui, H. and Benno, Y. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29, 159-169. https://doi.org/10.1111/j.1574-6941.1999.tb00607.x
  79. Tan, H. T., Tan, S., Lin, Q., Lim, T. K., Hew, C. L. and Chung, M. C. 2008. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells. Mol. Cell Proteomics 7, 1174-1185. https://doi.org/10.1074/mcp.M700483-MCP200
  80. Tan, S., Seow, T. K., Liang, R. C., Koh, S., Lee, C. P., Chung, M. C. and Hooi, S. C. 2002. Proteome analysis of butyrate- treated human colon cancer cells (HT-29). Int. J. Cancer 98, 523-531. https://doi.org/10.1002/ijc.10236
  81. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. and Nie, D. 2011. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128, 847-856. https://doi.org/10.1002/ijc.25638
  82. Tazoe, H., Otomo, Y., Kaji, I., Tanaka, R., Karaki, S. I. and Kuwahara, A. 2008. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 59 Suppl 2, 251-262.
  83. Toit-Kohn, J. L., Louw, L. and Engelbrecht, A. M. 2009. Docosahexaenoic Acid induces apoptosis in colorectal carcinoma cells by modulating the Pi3 kinase and P38 Mapk pathways. J. Nutr. Biochem. 20, 106-114. https://doi.org/10.1016/j.jnutbio.2007.12.005
  84. Topping, D. L. and Clifton, P. M. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031-1064.
  85. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R. and Gordon, J. I. 2007. The human microbiome project. Nature 449, 804-810. https://doi.org/10.1038/nature06244
  86. Uronis, J. M., Muhlbauer, M., Herfarth, H. H., Rubinas, T. C., Jones, G. S. and Jobin, C. 2009. Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 4, 6026. https://doi.org/10.1371/journal.pone.0006026
  87. Vijay-Kumar, M., Aitken, J. D., Carvalho, F. A., Cullender, T. C., Mwangi, S., Srinivasan, S., Sitaraman, S. V., Knight, R., Ley, R. E. and Gewirtz, A. T. 2010. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328, 228-231. https://doi.org/10.1126/science.1179721
  88. Vinolo, M. A., Ferguson, G. J., Kulkarni, S., Damoulakis, G., Anderson, K., Bohlooly, Y. M., Stephens, L., Hawkins, P. T. and Curi, R. 2011. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6, 21205. https://doi.org/10.1371/journal.pone.0021205
  89. Vinolo, M. A., Rodrigues, H. G., Nachbar, R. T. and Curi, R. 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3, 858-876. https://doi.org/10.3390/nu3100858
  90. Von Soest, P. J. 1982. Nutritional ecology of the ruminant. Q & B Books Inc. Corvallis. Oregon.
  91. Wachtershauser, A. and Stein, J. 2000. Rationale for the luminal provision of butyrate in intestinal diseases. Eur. J. Nutr. 39, 164-71. https://doi.org/10.1007/s003940070020
  92. Wagner, J. M., Hackanson, B., Lubbert, M. and Jung, M. 2010. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics 1, 117-136. https://doi.org/10.1007/s13148-010-0012-4
  93. Walker, A. W. 2006. Influence of substrate and environmental factors on human gut microbial ecology and metabolism. Thesis, University of Dundee. UK.
  94. Wilson, D. E. and Reeder, D. M. 2005. Mammal Species of the world. 3rd eds. Johns Hopkins Univ Pr.

Cited by

  1. Quality characteristics of brown rice boiled with medicinal herbs extract for diabetes prevention vol.21, pp.1, 2014, https://doi.org/10.11002/kjfp.2014.21.1.55