• Title/Summary/Keyword: Short Distance Method

Search Result 345, Processing Time 0.029 seconds

Cable Fault Detection Improvement of STDR Using Reference Signal Elimination (인가신호 제거를 이용한 STDR의 케이블 고장 검출 성능 향상)

  • Jeon, Jeong-Chay;Kim, Taek-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.450-456
    • /
    • 2016
  • STDR (sequence time domain reflectometry) to detect a cable fault using a pseudo noise sequence as a reference signal, and time correlation analysis between the reference signal and reflection signal is robust to noisy environments and can detect intermittent faults including open faults and short circuits. On the other hand, if the distance of the fault location is far away or the fault type is a soft fault, attenuation of the reflected signal becomes larger; hence the correlation coefficient in the STDR becomes smaller, which makes fault detection difficult and the measurement error larger. In addition, automation of the fault location by detection of phase and peak value becomes difficult. Therefore, to improve the cable fault detection of a conventional STDR, this paper proposes the algorithm in that the peak value of the correlation coefficient of the reference signal is detected, and a peak value of the correlation coefficient of the reflected signal is then detected after removing the reference signal. The performance of the proposed method was validated experimentally in low-voltage power cables. The performance evaluation showed that the proposed method can identify whether a fault occurred more accurately and can track the fault locations better than conventional STDR despite the signal attenuation. In addition, there was no error of an automatic fault type and its location by the detection of the phase and peak value through the elimination of the reference signal and normalization of the correlation coefficient.

The Usefulness of the Chronic Obstructive Pulmonary Disease Assessment Test (만성 폐쇄성 폐질환 평가 테스트의 유용성)

  • Kim, Yu-Eun;Lee, Sang-Su;Kim, Cha-Young;Lee, Seung-Hun;Lim, Su-Jin;Cho, Yu-Ji;Jeong, Yi-Yeong;Kim, Ho-Cheol;Hwang, Young-Sil;Lee, Jong-Deog
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.4
    • /
    • pp.271-277
    • /
    • 2011
  • Background: A chronic obstructive pulmonary disease (COPD) assessment test (CAT) has recently been developed as a short and simple method for assessing the quality of life in COPD patients. The object of this study was to assess the usefulness of the Korean version of the CAT for assessing COPD patients in an outpatient clinic. Methods: The study included 60 COPD patients in a stable state from an outpatient clinic. The authors investigated the frequency of acute exacerbation during aprevious year through reviewing medical records. We evaluated the spirometry test, a 6-min walk distance test, and obtained the MMRC dyspnea scale, the Korean version of the CAT, and the BODE index at the time of visit. To assess the usefulness of the CAT, correlations between the CAT and other methods were evaluated. Results: The mean age of patients was $68.3{\pm}8.6$ years and 95% of patients were male. There was a significant correlation between the CAT score and $FEV_1%$ (r=-0.323, p=0.012), the frequency of acute exacerbation (r=0.292, p=0.024), the MMRC dyspnea scale (r=0.554, p<0.001), the BODE index (r=0.380, p=0.003), and 6 MWD (r=-0.372, p=0.004). The mean CAT score increased according to the GOLD stage (stage 1, $10.7{\pm}4.5$; stage 2, $13.1{\pm}7.9$; stage 3, $16.3{\pm}6.2$; stage 4, $16.5{\pm}14.8$; p=0.746). Conclusion: The CAT was shown to be useful for the assessment of COPD severity. Therefore, the CAT is an easily applied and simple method for assessing COPD severity in an outpatient clinic.

Field Analysis in the Ferrite Core at 100 kHz Band Magnetic Field (100 kHz 대역의 자계 환경내(內)에서의 페라이트 코어의 계(界) 해석)

  • Koo, Bon-Chul;Yoo, Jae-Sung;Kim, Mi-Ja;Gimm, Yoon-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.977-983
    • /
    • 2007
  • Recently, the number of systems which utilize wireless power transmission to a receiving module in a short distance is increasing. For efficient use of receiving space, coils are wound around the ferrite core to produce electromotive force(emf) in suppling power by wireless transmission. This paper analyzed the magnetic flux density distribution in the ferrite core in magnetic field environment which is uniformly oriented along to a single axis at 125kHz. For numerical analysis, Ansoft Maxwell which is applying the FEM(Finite Element Method) method was used. We studied the variations of the gathered magnetic fluxes to the changes of the relative permeabilities of the ferrite cores. Also we calculated the magnetic flux variation by shaving the ferrite core off for the groove of coil winding. Results showed that using a small ferrite core in magnetic field at 100kHz band can increase the amount of magnetic flux $3{\sim}4 times$ than without the core. The magnetic flux decreased 23% by shaving the core 0.5 mm on the periphery of 4.75 mm radius core with the relative permeability 800.

Genetic Diversity and Genetic Structure of Phellodendron amurense Populations in South Korea (황벽나무 자연집단의 유전다양성 및 유전구조 분석)

  • Lee, Jei-Wan;Hong, Kyung-Nak;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.51-58
    • /
    • 2014
  • Genetic diversity and genetic structures were estimated in seven natural populations of Phellodendron amurense Rupr in South Korea using ISSR markers. The average of polymorphic loci per primer and the proportion of polymorphic loci per population were 4.5 and 78.8% respectively with total 27 polymorphic loci from 6 ISSR primers. The Shannon's diversity index(I) was 0.421 and the expected heterozygosity($H_e$) was 0.285, which was similar to the heterozygosity (hs =0.287) inferred by Bayesian method. In AMOVA, 7.6% of total genetic variation in the populations was resulted from the genetic difference among populations and the other 92.4% was resulted from the difference among individuals within populations. Genetic differentiation(${\theta}^{II}$) and inbreeding coefficient(f) for total population were estimated to be 0.066 and 0.479 by Bayesian method respectively. In Bayesian clustering analysis, seven populations were assigned into three groups. This result was similar to the results of genetic relationships by UPGMA and PCA. The first group included Hwachoen, Gapyeong, Bongpyeong and Yongpyeong population, and the second included two populations in Sancheong region. Muju population was discretely assigned into the third group in spite of the geographically short distance from the Sancheong region. There was no significant correlation between genetic relationship and geographic distribution among populations in Mantel's test. For conservation of the phellodendron trees, it would be effective to consider the findings resulted from this study with ecological traits and life histories of this species.

A Study on the D-InSAR Method for Micro-deformation Monitoring in Railway Facilities (철도시설물 미소변형 모니터링을 위한 D-InSAR 기법 연구)

  • Kim, Byung-Kyu;Lee, Changgil;Kim, Winter;Yoo, Mintaek;Lee, Ilhwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.43-54
    • /
    • 2022
  • The settlement at the railroad foundation is often the leading cause of track irregularity and potential derailment. The control of such deformation is considered necessary in track maintenance practice. Nevertheless, the monitoring process performed by in situ surveying requires an excessive amount of manpower and cost. The InSAR, a remote sensing technique by RADAR satellite, is used to overcome such a burden. The PS-InSAR technique is preferred for a long-term precise monitoring method. However, this study aims to obtain relatively brief analysis results from only two satellite images using the D-InSAR technique, while a minimum of 25 images are required for PS-InSAR. This study verifies the precision of D-InSAR within a few millimeters by inspecting railroad facilities and land settlements in Korea Railroad Research Institute's test track with images from TerraSAR-X Satellite. Multiple corner reflectors were adopted and installed on an embankment and the building roof to raise the surface reflectivity. Those reflectors were slightly adjusted periodically to verify the detecting performance. The results revealed the optimum distance between corner reflectors. Further, the deformation of railway tracks, slopes, and concrete structures was analyzed successively. In conclusion, this study indicates that the D-InSAR technique effectively monitors the short-term deformation of a broad area such as railway structures.

A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data (스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식)

  • Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.163-177
    • /
    • 2019
  • As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.

Estimation of Uranium Particle Concentration in the Korean Peninsula Caused by North Korea's Uranium Enrichment Facility (북한 우라늄 농축시설로 인한 한반도에서의 공기중 우라늄 입자 농도 예측)

  • Kwak, Sung-Woo;Kang, Han-Byeol;Shin, Jung-Ki;Lee, Junghyun
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • North Korea's uranium enrichment facility is a matter of international concern. It is of particular alarming to South Korea with regard to the security and safety of the country. This situation requires continuous monitoring of the DPRK and emergency preparedness on the part of the ROK. To assess the detectability of an undeclared uranium enrichment plant in North Korea, uranium concentrations in the air at both a short and a long distance from the enrichment facility were estimated. $UF_6$ source terms were determined by using existing information on North Korean facility and data from the operation experience of enrichment plants from other countries. Using the calculated source terms, two atmospheric dispersion models (Gaussian Plume Model and HYSPLIT models) and meteorological data were used to estimate the uranium particle concentrations from the Yongbyon enrichment facility. A maximum uranium concentration and its location are dependent upon the meteorological conditions and the height of the UF6 release point. This study showed that the maximum uranium concentration around the enrichment facility was about $1.0{\times}10^{-7}g{\cdot}m^{-3}$. The location of the maximum concentration was within about 0.4 km of the facility. It has been assumed that the uranium sample of about a few micrograms (${\mu}g$) could be obtained; and that few micrograms of uranium can be easily measured with current measurement instruments. On the contrary, a uranium concentration at a distance of more than 100 kilometers from the enrichment facility was estimated to be about $1.0{\times}10^{-13}{\sim}1.0{\times}10^{-15}g{\cdot}m^{-3}$, which is less than back-ground level. Therefore, based on the results of our paper, an air sample taken within the vicinity of the Yongbyon enrichment facility could be used to determine as to whether or not North Korea is carrying out an undeclared nuclear program. However, the air samples taken at a longer distance of a few hundred kilometers would prove difficult in detecting a clandestine nuclear activities.

Optimal Process Planning of CNG Pressure Vessel by Ensuring Reliability and Improving Die Life (CNG 압력용기의 최적 공정설계를 통한 공정의 신뢰성 확보 및 다이 수명 향상)

  • Bae, Jun Ho;Lee, Hyun Woo;Kim, Moon Saeng;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.865-873
    • /
    • 2013
  • The deep drawing and ironing (DDI) process involving the use of a high-capacity horizontal press is used for manufacturing acompressed natural gas (CNG) pressure vessel. However, some variables of the DDI process have been determined based on the experiences of workers, and the short die life needs to be improved for manufacturing the pressure vessel withhighquality and lowcost. In this study, process variables such as the draw ratio, distance between dies, radius of rounding of drawing die, and angle of ironing die are chosen to enhance the reliability and improve the die life based on previous studies and experiences. The draw ratio limits at which no tearing or wrinkling occurs are determined using FEA, and the distances between dies, radius of rounding of drawing die, and angle of ironing die are optimized by the DOE method. The results of the optimal process variables are compared with those of the existing DDI process for verifying their effectiveness.

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

Loop Suture Technique for Flexor Digitorum Profundus Tendon Repair in the Insertion Site (고리 봉합법을 이용한 심부 수지 굴건 종지부에서의 건봉합)

  • Lee, Kyu-Cheol;Lee, Dong-Chul;Kim, Jin-Soo;Ki, Sae-Hwi;Roh, Si-Young;Yang, Jae-Won
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • Purpose: In the case of repair for far distal parts of FDP (Flexor digitorum profundus) division, the method of either pull-out suture or fixation of tendon to the distal phalanx is preferred. In this paper, the results of a modified loop suture technique used for the complete division of FDP from both zone 1a and distal parts of zone 1b in Moiemen classification are presented. Methods: From July 2006 to July 2009, the modified loop suture technique was used for the 10 cases of FDP in complete division from zone 1a and distal parts of zone 1b, especially where insertion sites were less than 1 cm apart from a tendon of a stump. In a suture technique, a loop is applied to each distal and proximal parts of tendon respectively. Core suture of 2-strand and epitendinous suture are done with PDS 4-0. Out of 10 patients, the study was done on 6 patients who were available for the followup. The average age of the patients was 49.1 years (in the range from 26 to 67). 5 males and 1 female patients were involved in this study. There were 3 cases with zone 1a and distal parts of zone 1b. The average distance to the distal tendon end was 0.6 cm. There were 5 cases underwent microsurgical repair where both artery and nerve divided. One case of only tendon displacement was presented. The dorsal protective splint was kept for 5 weeks on average. The results of the following tests were measured: active & passive range of motion, grip strength test, key pinch and pulp pinch test. Results: The follow-up period on average was 11 months, in the range from 2 to 20 months. There was no case of re-rupture, but tenolysis was performed in 1 cases. In all 6 cases, the average active range of motion of distal interphalangeal joint was 50.8 degree. The grip strength (ipsilateral/contralateral) was measured as 88.7% and the pulp pinch test was 79.2% as those of contralateral side. Flexion contracture was presented in 2 cases (15 degree on average) and there was no quadrigia effect found. Conclusion: Despite short length of tendon from the insertion site in FDS rupture in zone 1a and distal parts of zone 1b, sufficient functional recovery could be expected with the tendon to tendon repair using the modified loop suture technique.