• Title/Summary/Keyword: Shore power

Search Result 96, Processing Time 0.023 seconds

Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines (해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상)

  • Kang, Ja-Yoon;Han, Dae-Su;Suh, Yong-Sug;Jung, Byoung-Chang;Kim, Jeong-Joong;Park, Jong-Hyung;Choi, Young-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

Shore power to ships and offshore plants with flywheel energy storage system

  • Jeong, Hyun-Woo;Ha, Yun-Su;Kim, Yoon-Sik;Kim, Chul-Ho;Yoon, Kyoung-Kuk;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.771-777
    • /
    • 2013
  • This paper describes a study of major shipyard's electrical network and simulation of applying flywheel energy storage system on the electrical network at shipyard for shore-power to ships and offshore plants in order to save fuel consumption on engines, mitigate voltage sags, and prevent blackout due to pulsed load and fault, resulting in reduction of air emission into atmosphere. The proposed energy recycling method with FESS (Flywheel Energy Storage System) can be applied for electrical power system design of heavy cranes at shipyards.

The investigation of field condition on flood protection of substation and underground power equipment (pad-mounted transformers & switches) (수변전실 및 지중 배전기기의 침수 방지 관련 현장 조사 분석)

  • Kim, Gi-Hyun;Choi, Myeong-Il;Bae, Suk-Myong;Lee, Jae-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.327-331
    • /
    • 2007
  • Inundation of substation and underground power equipment(pad-mounted transformers & switches) breaks out every summer season in low-lying downtown and low-lying shore by localized heavy rain, typhoon and tidal wave. In case inundation of substation and underground power equipment, it occurs a great economic loss owing to recovery time and events of electric shock occur by inundation electrical facility. So we search the damage situation and installation situations. Therefore we propose the necessity of protection of flood at low-lying downtown and low-tying shore. This paper will be used to present a reform proposal of electrical related law about flood protection of existing power equipment.

  • PDF

A Study on the Reduction of $CO_2$ Emissions and Operating Costs of the Ship in Port by Shore Electric Power (육상전력 사용에 따른 정박중인 선박의 $CO_2$ 배출 및 운항비용 절감에 관한 연구)

  • Han, Won-Hui;Lim, Kyung-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.229-234
    • /
    • 2010
  • Recently, nations around the world are putting various efforts in many aspects to decrease greenhouse gases and international cooperation is urgently required. As part of these efforts, the shipping industry is working towords establishing "green parts" that reduce the carbon content of the greenhouse gases emitted in ports and can also decrease the operating costs. This study has tried to look for how to supply shore power instead of suppling ship's own generated power as a basic researches for reduction of carbon emissions and construction of "green parts" system. And in this paper, the training ship 'SAENURI' of Mokpo Maritime University under actual operation was selected to investigate for environmental and expense effects. The results of this study showed that $CO_2$ emissions Mere reduced 34% and operating costs Mere reduced approximately 31% in case of using the shore paper.

A Medium-Voltage Matrix Converter Topology for Wind Power Conversion with Medium Frequency Transformers

  • Gu, Chunyang;Krishnamoorthy, Harish S.;Enjeti, Prasad N.;Zheng, Zedong;Li, Yongdong
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1166-1177
    • /
    • 2014
  • A new type of topology with medium-frequency-transformer (MFT) isolation for medium voltage wind power generation systems is proposed in this paper. This type of converter is a high density power conversion system, with high performance features suitable for next generation wind power systems in either on-shore or off-shore applications. The proposed topology employs single-phase cascaded multi-level AC-AC converters on the grid side and three phase matrix converters on the generator side, which are interfaced by medium frequency transformers. This avoids DC-Link electrolytic capacitors and/or resonant L-C components in the power flow path thereby improving the power density and system reliability. Several configurations are given to fit different applications. The modulation and control strategy has been detailed. As two important part of the whole system, a novel single phase AC-AC converter topology with its reliable six-step switching technique and a novel symmetrical 11-segment modulation strategy for two stage matrix converter (TSMC) is proposed at the special situation of medium frequency chopping. The validity of the proposed concept has been verified by simulation results and experiment waveforms from a scaled down laboratory prototype.

Configuration and Operation characteristics of a Small stand-alone Wind Power Generation System (독립형 소형 풍력발전시스템 구성 및 운전특성)

  • Hwang, In-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.65-68
    • /
    • 2002
  • Most of the present demand in the world is met by fossil and nuclear power plants. A small part is met by renewable energy technologies. Among the renewable power sources, wind and solar energy have experienced a remarkably rapid growth in the past 10 years. Recently the utilization of wind power has been receiving close attention in this country, especially for the electrification of off-shore islands. The objective of this study is to demonstrate a small wind energy system as a stand-alone power source.

  • PDF

Effect of the Fatigue to Insole Types During Treadmill Exercise (트레드밀 운동 동안 인솔의 종류가 피로도에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Roh, Jung-Suk;Lee, Kang-Sung
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.17-25
    • /
    • 2004
  • The purpose of this study was to assess the effect of applied insole types to lower extremities muscle fatigue during treadmill exercise. The control group and each different insole type group consisted of ten healthy male subjects. In the control group and each different insole type (soft type; 10 shore, semi-rigid type; 33 shore, rigid type; 50 shore) treadmill exercise was performed in twenty-five minutes. The electromyography (EMG) signals of four muscle (tibialis anterior, gastrocnemius medialis, rectus femoris, biceps femoris) were recording at sampling rate of 1024 Hz during treadmill exercise. The localized muscle fatigue (LMF) can be investigated using power spectral analysis. When did data analysis that excepted initial five minutes. The raw EMG signals was processed using the fast Fourier Transformation (FFT) and the median power frequency value was determined in initial ten second period and in last ten second period. Fatigue index was calculated and collected data were statistically analyzed by SPSS version 10.0 two-way using analysis of variance (ANOVA) with repeated measures ($4{\times}4$) was used to determine the main effect and interaction. Post hoc was performed with least significant difference. A level of significance was .05. Muscles fatigue index were significantly decreased in insole types (p<.05) and not significantly different in muscle (p>.05). Post hoc analysis shows that fatigue index in soft insole type, semi-rigid insole type and rigid insole type were lower than that control group (p=.028, p=.146, p=.095). There were no interaction between insole type and muscles (p>.05). The finding of this study can be used as a fundamental data when insole is applied and insole can be used to decreased of a fatigue during the dynamic exercise.

  • PDF

The Novel Control Circuit Design and Implementation for an Power Amplifier Module (AIS용 전력 증폭기 모듈의 새로운 출력 제아 회로 설계 및 제작)

  • Han, Jae-Ryong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.669-679
    • /
    • 2003
  • Through AIS(Automatic Identification System), ITU-R suggested the navigational data communication between ships and between ships and shore stations for the better safety of navigation, and it requires two different the transmitting output power level depending on its operating mode. According to ITU's recommendation, these levels should reach within 20% of its final value in 1ms. In this paper, an adequate feedback control circuit for power amplifier module is designed and implemented.

  • PDF

Shore Attachement of Jet in Flowing Environment (흐름수역에서 ?흐름의 연안귀환)

  • Yoon, Tae Hoon;Yook, Woon Soo;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.43-52
    • /
    • 1992
  • The shore attachment of jet in a cross flow is analysed by experiments and dimensional analysis. The jet flow is discharged with the same depth as that of the cross flow through a side channel perpendicular to the cross flow through a side channel perpendicular to the cross flow. For a momentum jet, nondimensional attachment length and height are dependent on nondimensional characteristic length $I_m/W$. For a buoyant jet, nondimensional attachment length is affected by $I_b/I_md$ and nondimensional temperature distribution is a function of $x/I_b$ and they all can be predicted as power laws. The shore attachment condition can be specified by velocity ratio R.

  • PDF