• 제목/요약/키워드: Shoe type

검색결과 122건 처리시간 0.021초

한국형 배드민턴화 개발을 위한 생체역학적 성능평가(I) (Biomechanical Testing and Evaluation for Korean Badminton Shoes Project(I))

  • 박승범;박상균
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.149-157
    • /
    • 2009
  • 본 연구의 목적은 한국의 대표적인 배드민턴화(A Type)와 외국 배드민턴 브랜드제품(B Type)의 생체역학적인 변인들을 비교함으로서 한국제품의 착화감과 기능을 향상시켜 세계적인 수준의 배드민턴화 개발에 일조하는데 목적을 두었다. 분석변인들로는 동작 간 신발 안에서 발의 상대적인 움직임, 지면반력과 압력분포, 아웃솔의 마찰력등을 분석하였다. 또한 17명의 피험자를 통한 주관적인 착화감과 기능에 관련된 주관적인 실험이 실시되었다. A Type 배드민턴화의 경우 높은 뒤꿈치의 위치와 밋밋한 뒷굽의 형태로 신발 안에서 뒤꿈치를 잘 잡아주지 못하는 것으로 나타났다. 따라서 A Type 배드민턴화가 약 40%이상 발이 신발 안에서의 미끄러짐 현상이 일어났으며 충격력의 형태나 최대 압력분포도 높게 나타났다. Type A 신발의 경우 Type B와 같이 자연스러운 굴곡이 발의 볼쪽에서 일어나지 않고 전족부근에서 일어났다. 요약을 하면, 두 신발 간에 몇몇 차이점들이 발견되었고 A Type 배드민턴화의 기능을 향상하기 위해서 보완가능 요인들이 제시되었다.

윈들라스 메커니즘을 적용한 트레일 워킹화 개발을 위한 생체역학적 분석 (Biomechanical Analysis for the Development of Windlass Mechanism for Trail-walking Shoe)

  • 박종진;박승범
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.489-498
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the effects of the windlass mechanism in trail-walking shoe prototypes that can effectively support arches. A study of these effects should help with the development of a first-rate trail-walking shoe development guide for the distribution of quality information to consumers. Methods : The subjects were ten adult males who volunteered to participate in the study. Shoes from three companies, which will be referred to as Company S (Type A), Company M (Type B), and Company P (Type C), were selected for the experiment. The subjects wore these shoes and walked at a speed of 4.2 km/h, and as they tested each shoe, the contact area, maximum pressure average, and surface force were all measured. Results : Shoe Type A showed a contact area of $148.78{\pm}4.31cm^2$, Type B showed an area of $145.74{\pm}4.1cm^2$, and Type C showed an area of $143.37{\pm}4.57cm^2$ (p<.01). Shoe Type A demonstrated a maximum average pressure of $80.80{\pm}9.92kPa$, Type B an average of $85.72{\pm}11.01kPa$, and Type C an average of $89.12{\pm}10.88bkPa$ (p<.05). Shoe Type A showed a ground reaction force of $1.13{\pm}0.06%BW$, Type B a force of $1.16{\pm}0.04%BW$, and Type C a force of $1.16{\pm}0.03%BW$ (p<.05). Conclusion : The Type A trail-walking shoe, which was designed with a wide arch from the center of the forefoot to the front of the rearfoot showed excellent performance, however, more development and analysis of the windlass mechanism for a variety of arch structures is still necessary.

신발 종류에 따른 족저 임펄스의 분석 (Analysis of Impulse under Foot in Various Shoes)

  • 안은수;엄광문;이순혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1228-1231
    • /
    • 2004
  • We analyzed the impulse on 24 sensors location under the foot using the Parotec system for the investigation of the relationship between the shoe type and the foot pathologies. Total 7 kinds of shoes, i.e. sport shoe, high heel shoes (5cm heel, 8cm heel, 13cm heel), platform shoe, inline skate, and heelys were evaluated for 20 normal subjects. Compared with the impulse distribution of the sport shoe, greater impulses were shown at the 1$^{st}$ phalange and the 1$^{st}$ metatarsal-phalangeal head in high-heel shoes, lateral tarsal bone and medial metatarsal bone in platform shoe, medial tarsal bone in inline-skate, and medial tarsal bone and 1st phalange in heelys shoe. The result of this study is expected to provide useful information about the relationship between the shoe type and the foot pathologies.ies.

  • PDF

신발 유형과 행동 과제에 따른 보행 속도 분석 (Analysis of Walking Speed According to Shoe type and Behavioral tasks)

  • 김재원;조연하;이선엽;이무렬;김소정;김진아
    • 한국임상보건과학회지
    • /
    • 제5권4호
    • /
    • pp.1015-1020
    • /
    • 2017
  • Purpose. Walking depends on the speed and type of shoe to be worn, and the degree of impact varies with the muscle used. In addition, the speed can be changed by moving objects and using objects when walking. This study analyzed the change of walking speed by applying various factors influencing walking. Methods. A total of 60 patients who had not undergone musculoskeletal diseases during the last 1 year were included. Shoe type was divided into slippers and shoe heels. Behavioral types were divided into bagging, books, and cell phone use. The walking speed was measured by the general walking, the middle walking, and the fast walking. The time was measured using a 10M linear distance test. The collected data were analyzed with SPSS program for independent samples t-test, one-way ANOVA. Results. There was a statistically significant difference according to the type of shoes when walking. Walking speed was slow in shoe heel. In addition, There was statistically significant difference according to type of behavior task at walking. Walking speed was slow in task type using mobile phone during walking. Conclusions. The walking speed were appeared difference in each type of shoe heel, using mobile phone.

신발사이즈가 신발 내적환경(內的環境)에 미치는 영향(影響) (Effects of Shoe Sizes on the Inner Environment of Shoes)

  • 유현;심부자
    • 패션비즈니스
    • /
    • 제6권4호
    • /
    • pp.151-162
    • /
    • 2002
  • This study aims to reveal the effects of shoe size room on the inner environment of shoes by examining the changes of footskin temperature, temperature and humidity of the shoes, and psychological responses. The following conclusions were made: 1. Skin temperature had significant differences according to shoe sizes in the inner foot parts (right/left) and the outer foot part (left). As time went, skin temperature was distributed as follows: Type A > Type C > Type B. 2. Skin temperature appeared in the following order: instep > inner foot > outer foot. 3. The temperature within the shoes had significant differences: Type A > Type C > Type B. But no significance was recognized in the humidity within the shoes: Type B > Type C > Type A. 4. Some significance was noticed in the psychological responses of size fitness and comfortableness. In size fitness, Type B was responded to be fitting, Type A little small, and Type C rather big. Moisture had similar changes according to three shoe sizes, but humid was the response as time went. Comfortableness appeared in the order of Type C > Type B > Type A.

Qualitative Analysis of Pressure Intensity and Center of Pressure Trajectory According to Shoe Type

  • Yi, Kyung-Ock
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.261-268
    • /
    • 2012
  • The purpose of this study was to qualitatively analyze pressure intensity and the center of pressure(COP) trajectory according to shoe type. Subjects were ten first-year female university students. The EMED-AT 25/D(Novel, Germany) was used to measure pressure intensity and COP trajectory. The COP Excursion Index(CPEI) was used for within subject test design. Independent variables were bare feet and six types of shoes. Dependent variables were center of pressure trajectory and pressure intensity. Barefeet and five toed shoes had a similar pressure intensity and COP trajectory. COP trajectory for all other shoe types showed a medial wobble at the heel. Pressure intensity for all other shoe types was related to the structure of the shoes. In conclusion, different shoe types can not only affect gait, but they can also influence foot deformities, pain, and dysfunction.

베어링 내륜의 내면 연삭가공에서 진원도 개선 방안 (A scheme on roundness lmprovement in internal grinding of bearing inner race)

  • 김정석;강명창;배정철
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.60-66
    • /
    • 1996
  • Precision of bearing race is very important to maintain the clearance between ball and inner race. In internal grinding of bearing race, its roundness is dependent on shoe wear, accuracy of jig, dressing method and grinding conditions. In this study, the characteristics of shoe wear and eccentricity of workpiece were investigated experimentally. When wear of fornt shoe wear reaches at 100.mu. m and that of rear shoe reaches at 114 .mu. m, eccentricity of inner race is increased to 1.4 .mu. m. Roundness of race is mainly related to wear of rear shoe and ring type shoe is recommended to improve roundness of race.

  • PDF

여러타입의 신발에 대한 족저압력과 임펄스의 비교분석 (Comparison of Plantar Foot Pressure and Impulse in Various Shoe Types)

  • 안은수;엄광문;이순혁
    • 한국정밀공학회지
    • /
    • 제22권8호
    • /
    • pp.174-181
    • /
    • 2005
  • We analyzed the pressure, impulse on 24 sensors location under the foot using the Parolee system. Total 7 kinds of shoes, i.e. sport shoe, high heel shoes (5cm heel, 8cm heel, 13cm heel), platform shoe, inline skate, and heelys were evaluated for 20 normal subjects. Compared with those of sport shoe, greater pressure and impulse were shown on the 1 st phalange and the 1 st metatarsal head and greater impulse on the medial tarsal bone in high-heel shoes. Greater pressure and impulse were shown on medial metatarsal bone and the lateral tarsal bone in platform shoe. Greater impulse was shown on the medial tarsal bone in inline-skate. Heelys shoe showed smaller impulse on the central area of foot. The result of this study is expected to provide useful information about the relationship between the shoe type and the foot pathologies.

한국형 봅슬레이화 개발을 위한 구간 시간과 족저압력 분석 (The Analysis of Foot Pressure and Lap Time for the Development of Korean Bobsleigh Shoes)

  • 박종진;김경훈;박승범
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.465-474
    • /
    • 2015
  • Objective : A study and development of Korean Bobsleigh athletes's shoe which considers their physical condition has yet to be completed. So this study examines the effects of running shoes used by athletes based on plantar pressure and sprint time in order to provide raw data for the development of bobsleigh shoes suitable for Koreans. Method : The study selected seven bobsleigh athletes as subjects and selected three pairs of spiked running shoes from three companies, which will be referred to as Company N (Type A), Company A (Type B), and Company M (Type C). To analyze sprint time and plantar pressure for each shoe, the subject of the study were instructed to wear the selected shoes and to drag a sled at maximum sprint for 15 meters for 15 meters for in each condition that would be in real bobsleigh competitions. Results : The average sprint intervals for each athlete in each pair of shoes revealed Type C produce the fastest sprint in the order of Type C < Type A< Type B. Shoe Type C also had the largest contact area in order of Type C > Type B > Type A (p<.01). None of the three shoe types seem to yield a distinct advantage in terms of maximum average pressure or maximum pressure. Conclusion : In the future, functional analysis should be carried out by comparing the material properties, hardness, and toe spring of shoes based on the Type C shoe from Company M in order to develop bobsleigh shoes suitable for Koreans.

고탄성 런닝화가 생체역학적 요소에 미치는 영향 (Effect of High Elastic Running Shoes on Biomechanical Factors)

  • Lee, Jungho
    • 한국운동역학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2020
  • Objective: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Method: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Results: In vastus lateralis muscle Activation, Type 55 were significantly higher for Type 50 and X (p=0.019, p=0.045). In Gluteus Maximus muscle activation, Type 55 was significantly lower for type 50 (p=0.005). In loading late, Type 55 and X were significantly higher for type 45 (p=0.008, p=0.006). Conclusion: The components of a shoe are very complex, and there can be many differences in manufacturing as well. Although some differences can be found in the biomechanical variables of the high elastic midsole, it is difficult to interpret the performance enhancement and injury prevention.