• 제목/요약/키워드: Shock-boundary layer interaction

검색결과 110건 처리시간 0.024초

초음속디퓨져에서 발생하는 수직충격파의 난류경계층의 간섭에 관한 실험 (A New Experiment on Interaction of Normal Shock Wave and Turbulent Boundary Layer in a Supersonic Diffuser)

  • 김희동;홍종우
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2283-2296
    • /
    • 1995
  • Experiments of normal shock wave/turbulent boundary layer interaction were conducted in a supersonic diffuser. The flow Mach number just upstream of the normal shock wave was in the range of 1.10 to 1.70 and Reynolds number based upon the turbulent boundary layer thickness was varied in the range of 2.2*10$^{[-994]}$ -4.4*10$^{[-994]}$ . The wall pressures in streamwise and spanwise directions were measured for two test cases, in which the turbulent boundary layer thickness incoming into the supersonic diffuser was changed. The results show that the interactions of normal shock wave with turbulent boundary layer in the supersonic diffuser can be divided into three patterns, i.e., transonic interaction, weak interaction and strong interaction, depending on Mach number. The weak interactions generate the post-shock expansion which its strength is strong as the Mach number increases and the strong interactions form the pseudo-shock waves. From the spanwise measurements of wall pressure, it is known that if the flow Mach number is low, the interacting flow fields essentially appear two-dimensional, but they have an apparent 3-dimensionality for the higher Mach numbers.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

굽어진 유로 내부의 충격파-경계층 상호작용 수치연구 (Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path)

  • 김재은;정승민;최정열;황유준
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.36-44
    • /
    • 2021
  • 스크램제트 엔진 비행시험체의 굽어진 중앙동체 내부 유로에서 발생하는 충격파-경계층 상호작용에 대한 수치해석을 수행하였다. 수치해석에는 압축성 Raynolds Averaged Navier Stokes(RANS) 방정식에 난류모델 k-ω SST을 사용하였다. 대표적으로 노즐 윗 벽면의 박리기포, 오목한 충격파와 경계층의 상호작용, 모서리의 충격파-충격파 상호작용이 포착되었다. 해석 결과는 굽어진 내부 유로의 충격파-경계층 상호작용을 가시화하여 이해를 높이고 설계 유의점을 제시하였다.

충격파 경계층 상호작용에서 난류모델 및 난류점성의 효과 (EFFECTS OF TURBULENCE MODEL AND EDDY VISCOSITY IN SHOCK-WAVE / BOUNDARY LAYER INTERACTION)

  • 전상언;박수형;변영환
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.56-65
    • /
    • 2013
  • Two compression ramp problems and an impinging shock problem are computed to investigate influence of turbulence models and eddy viscosity on the shock-wave / boundary layer interaction. A Navier-Stokes boundary layer generation code was applied to the generation of inflow boundary conditions. Computational results are validated well with the experimental data and effects of turbulence models are investigated. It is shown that the behavior of turbulence (eddy) viscosity directly affects both the extent of the separation and shock-wave positions over the separation.

유동의 흡입이 충격파/경계층의 간섭현상에 미치는 영향 (Effect of flow bleed on shock wave/boundary layer interaction)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1273-1283
    • /
    • 1997
  • Experiments of shock wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer flow bleed on the interaction flow field in a straight tube. Two-dimensional slits were installed on the tube walls to bleed the turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled within the range of 11 per cent. The wall pressures were measured by the flush mounted transducers and Schlieren optical observations were made for almost all of the experiments. The results show that the boundary layer flow bleed reduces the multiple shock waves to a strong normal shock wave. For the design Mach number of 1.6, it was found that the normal shock wave at the position of the silt was resulted from the main flow choking due to the suction of the boundary layer flow.

경계층 유동의 흡입에 의한 수직충격파 진동저감 (Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction)

  • 김희동
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Bump가 있는 초음속 흡입구 유동장의 수치적 연구 (THE NUMERICAL STUDY ON THE SUPERSONIC INLET FLOW FIELD WITH A BUMP)

  • 김상덕;송동주
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.19-26
    • /
    • 2005
  • The purpose of this paper is the study on the characteristics of an inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. in this study a comprehensive numerical analysis has been performed to understand the three-dimensional flow field including shock/boundary layer interaction and growth of turbulent boundary layer that might occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicate the potential capability of a three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

Bump가 있는 초음속 유동장의 수치적 연구 (The Numerical Study on the Supersonic Flow field with a Bump)

  • 김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.213-218
    • /
    • 2005
  • The purpose of this study is the characteristics of an innovative inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. This study performs a comprehensive numerical effort that be directed at better understanding the three-dimensional flowfield includes shock/boundary layer interaction and growth of turbulent boundary layer that occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicates the potential capability of the three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

  • PDF

초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성) (Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics))

  • 홍종우
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

不安定化된 亂流境界層 과 斜角入射衝擊波 와의 相互作용 (Interaction Between an Unstabilized Turbulent Boundary Layer and an Incident Oblique Shock Wave)

  • 이덕봉
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.158-173
    • /
    • 1985
  • 본 연구에서는 상호작용상류의 난류경계층에 분출을 가해서 경계층을 불안정 화시키고 이 불안정화된 난류경계층과 사각입사충격파와의 상호작용을 실험적으로 연 구하였다. Squire-Smith와는 다른 실험모형의 새로운 형태를 제시하였고 상호작용영 역에서 경계층의 압력분포 및 속도분포를 측정해서 충격파반사의 형태를 밝혔다.