DOI QR코드

DOI QR Code

Numerical Study of Shock Wave-Boundary Layer Interaction in a Curved Flow Path

굽어진 유로 내부의 충격파-경계층 상호작용 수치연구

  • Kim, Jae-Eun (Department of Aerospace Engineering, Pusan National University) ;
  • Jeong, Seung-Min (Department of Aerospace Engineering, Pusan National University) ;
  • Choi, Jeong-Yeol (Department of Aerospace Engineering, Pusan National University) ;
  • Hwang, Yoojun (Agency for Defense Development)
  • Received : 2020.12.24
  • Accepted : 2021.11.01
  • Published : 2021.12.31

Abstract

Numerical analysis was performed on the shock wave-boundary layer interaction generated in the internal flow path of the curved interstage of the scramjet engine flight test vehicle. For numerical analysis, the turbulence model k-ω SST was used in the compressibility Raynolds Averaged Navier Stokes(RANS) equation. Representatively, the separation bubbles on the upper wall of the nozzle, the interaction between the concave shock wave and the boundary layer, and the shock wave-shock wave interaction at the edge were captured. The analysis result visualizes the shock wave-boundary layer interaction of the curved internal flow path to enhance understanding and suggest design considerations.

스크램제트 엔진 비행시험체의 굽어진 중앙동체 내부 유로에서 발생하는 충격파-경계층 상호작용에 대한 수치해석을 수행하였다. 수치해석에는 압축성 Raynolds Averaged Navier Stokes(RANS) 방정식에 난류모델 k-ω SST을 사용하였다. 대표적으로 노즐 윗 벽면의 박리기포, 오목한 충격파와 경계층의 상호작용, 모서리의 충격파-충격파 상호작용이 포착되었다. 해석 결과는 굽어진 내부 유로의 충격파-경계층 상호작용을 가시화하여 이해를 높이고 설계 유의점을 제시하였다.

Keywords

Acknowledgement

본 논문은 국방과학연구소의 재원으로 학술연구용역 지원사업(201903400001)의 지원으로 작성되었습니다.

References

  1. Hank, J. M., Murphy, J. S. and Mutzman, R. C., "The X-51A scramjet engine flight demonstration program," 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, Ohio, pp. 2540, Apr. 2008.
  2. Curran, E. T. and Murthy, S. N. B., Scramjet propulsion, AIAA, 2001.
  3. Choi, J. Y., Jeung, I. S. and Yoon, Y. B., "Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 1: validation," AIAA, Vol. 38, No. 7, pp. 1179-1187, 2000. https://doi.org/10.2514/2.1112
  4. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal of Computational Physics, Vol. 43, pp. 357-372, 1981. https://doi.org/10.1016/0021-9991(81)90128-5
  5. Harten, A., "High resolution schemes for hyperbolic conservation laws," Journal of Computational Physics, Vol. 135, No. 2, pp. 260-278, 1997. https://doi.org/10.1006/jcph.1997.5713
  6. Wagner, J. L., "Experimental studies of unstart dynamics in inlet/isolator configurations in a Mach 5 flow," Ph.D. Dissertation, Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, 2009.
  7. Jang, I., Pecnik, R. and Moin, P., "A numerical study of the unstart event in an inlet/isolator model," Center for Turbulence Research Annual Research Briefs, pp. 93-103, 2010.
  8. Koo, H. S. and Raman, V., "Large-eddy simulation of a supersonic inlet-isolator," AIAA, Vol. 50, No. 7, pp. 1596-1613, 2012. https://doi.org/10.2514/1.J051568
  9. Settles, G. S., Fitzparpick, T. J. and Bogdonoff, S. M., "Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow," AIAA, Vol. 17, No. 6, pp. 579-585, 1979. https://doi.org/10.2514/3.61180
  10. Clemens, N. T. and Venkateswaran, N., "Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions," Annual Review of Fluid Mechanics, Vol. 46, pp. 469-492, 2014. https://doi.org/10.1146/annurev-fluid-010313-141346
  11. Mears, L. J., Baldwin, A., Ali, M. Y. and Kumar, R., "Spatially resolved mean and unsteady surface pressure in swept SBLI using PSP," Experiments in Fluids, Vol. 61, No. 4, pp. 1-14, 2020. https://doi.org/10.1007/s00348-019-2836-9
  12. Gao, X., Xiang, G. X., Tang, W. J., Jie, X. Z., Huang, X. He, J. Y. and Liu, S. A., "Investigations on the complex flows induced by dual-swept/dual-ramp wedges in supersonic flows," Scientific Reports, Vol. 10, No.1, pp. 1-9, 2020. https://doi.org/10.1038/s41598-019-56847-4