• Title/Summary/Keyword: Shock waves focusing

Search Result 7, Processing Time 0.026 seconds

A Computational Study of the Focusing Phenomenon of Weak Shock Wave (약한 충격파의 포커싱 현상에 관한 수치해석적 연구)

  • Kweon Yong Hun;Kim Heuy Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.169-172
    • /
    • 2002
  • When a plane shockwave reflects ken a concave wall, it is focused at a certain location, resulting in extremely high local pressure and temperature. This focusing is due to a nonlinear phenomenon of shock wave. The focusing phenomenon has been extensively applied to many diverse folds of engineering and medical treatment as well. In the current study, the focusing of shock wave over a reflector is numerically investigated using a CFD method. The Harten-Yee total variation diminishing (TVD) scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The incident shock wave Mach number $M_{s}\;of\;1.1{\~}l.3$ is applied to the parabolic reflectors with several different depths. Detailed focusing characteristics of the shock wave are investigated in terms of peak pressure, gasdynamic and geometrical foci. The results obtained are compared with the previous experimental results. The results obtained show that the peak pressure of shock wave focusing and its location strongly depend on the magnitude of the incident shock wave and depth of parabolic reflector. It is also found that depending up on the depth of parabolic reflector, the weak shock wave focusing process can classified into three distinct patterns : the reflected shock waves do not intersect each other before and after focusing, the reflected shock waves do not intersect each other before focusing, but intersect after focusing, and the reflected shock waves intersect each other before and after focusing. The predicted Schlieren images represent the measured shock wave focusing with a good accuracy.

  • PDF

Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector (2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석)

  • 최환석;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.

Numerical Study on the Shock Wave Focusing of Elliptic Reflectors (타원형 반사면에 의한 충격파 초점 변화에 관한 수치적 연구)

  • Ko C. C.;Shim E. B.;Sah J. Y.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 1999
  • In this study, the shock wave focusing of an elliptic reflector is numerically simulated by solving the Euler equations. The numerical method is the second order upwind TVD scheme with a finite volume discretization. For the verification of the present method, we simulate the moving shock wave passing through a two-dimensional corner. The computed isopycnics are compared with the earlier experiment. Numerical results of the elliptic reflectors show that the density and pressure at the focusing point increase linearly as the aspect ratio of the reflector becomes deep. On the other hand, the gas dynamic focal length decreased with the increase of the reflector aspect ratio.

  • PDF

Femtosecond laser induced shock generation and its application (펨토초 레이저 유발 shock 형성 및 그 응용)

  • Jeoung, Sae Chae;Lee, Heung Soon;Sidhu, M.S.;Moon, Heh-Young
    • Laser Solutions
    • /
    • v.17 no.4
    • /
    • pp.1-6
    • /
    • 2014
  • Femtosecond laser induced shock generation in water and vitreous humor of enucleated porcine eyeball was investigated. When focusing the femtosecond laser into the liquid mediums, the acoustic waves with a frequency of about 15.6kHz could be observed by using wide-band microphone. The amplitude of the acoustic signals from water has attained a maximum under a laser power of about 5mW. Further increment of the power results in a decrement of the acoustic signals due to nonlinear optical process including filamentation of laser beam. We have further investigated the effect of femtosecond laser induced acoustic waves by applying the laser pulse into enucleated porcine eyeball. The comparative studies on both healthy and diseased eyeballs led us propose that the femtosecond laser pulses could be utilized as a novel tools for treatment of partially detached retina layers from their choroid structures.

  • PDF

Electron Firehose Instabilities in High-β Intracluster Medium

  • Kim, Sunjung;Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2019
  • The firehose instability is driven by a pressure anisotropy in a magnetized plasma when the temperature along the magnetic field is higher than the perpendicular temperature. Such condition occurs commonly in astrophysical and space environments, for instance, when there are beams aligned with the background magnetic field. Recently, it was argued that, in weak quasi-perpendicular shocks in the high-β intracluster medium (ICM), shock-reflected electrons propagating upstream cause the temperature anisotropy. This electron temperature anisotropy can trigger the electron firehose instability (EFI), which excites oblique waves in the shock foot. Scattering of electrons by these waves enables multiple cycles of shock drift acceleration (SDA) in the preshock region, leading to the electron injection to diffusive shock acceleration (DSA). In the study, the kinetic properties of the EFI are examined by the linear stability analysis based on the kinetic Vlasov-Maxwell theory and then further investigated by 2D Particle-in-Cell (PIC) simulations, especially focusing on those in high-β (β~100) plasmas. We then discuss the basic properties of the firehose instability, and the implication of our work on electron acceleration in ICM shock.

  • PDF

Ultrasound-guided Exact Focusing of Extracorporeal Shock Wave Therapy for the Calcific Tendinitis of Gluteus Medius - A Case Report - (중둔건 석회화 건염의 초음파 유도하 정확한 조준에 의한 체외충격파치료 -증례 보고-)

  • Moon, Sang Ho;Lee, Song;Kim, Kwang Hai;Jeong, Jongpil;Hong, Seong Won
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.5 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Calcific tendinitis is characterized by inflammation around calcium hydroxyapatite crystal deposits. Minimally invasive extracorporeal shock wave therapy (ESWT) has been postulated to be an effective treatment option for treating calcific tendinitis. In clinical practice, shock waves usually are aimed at the painful area after palpation and not focused. It has been known that exact fluoroscopic focusing of ESWT at the calcific deposit for treatment of calcifying tendinopathy is highly effective. Ultrasound is a simple, inexpensive and radiation-free diagnostic tool that has been used to demonstrate tendinopathy including calcific tendinitis. However, focusing of shock wave under ultrasound is less well established. We present a patient in whom large calcific tendinitis of gluteus medius was completely resolved by exact focusing of ESWT by ultrasound with literature review.

  • PDF

Study on the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파의 히스테리시스 현상에 관한 연구)

  • Lee, Ik In;Han, Geu Roo;Kim, Teo Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • Hysteresis phenomena are often encountered in a wide variety of fluid flow systems used in industrial and engineering applications. Hence, in recent years, a significant amount of research been focusing on clarifying the physics of the flow hysteresis appearing during the transient change of the pressure ratios and influencing the performance of the supersonic wind tunnel. However, investigations on the hysteresis phenomenon, particularly when it occurs inside the supersonic wind tunnel, are rare. In this study, numerical simulations were carried out to investigate the hysteresis phenomena of the shock waves encountered in a supersonic wind tunnel. The unsteady and compressible flow was analyzed with an axisymmetric model, and the N-S equations were solved by using a fully implicit finite volume scheme. The optimal pressure ratio was determined from the hysteresis curves, and the results can be utilized to operate the wind tunnel efficiently.