• Title/Summary/Keyword: Shock wave.

Search Result 982, Processing Time 0.03 seconds

Evaluation of micro jet nozzle using finite elements method (유한요소해석을 이용한 마이크로 분사 노즐 특성 평가)

  • Lim, Dong-Wook;Choi, Doo-Sun;Kim, Tae-min;Park, Jung-Rae;Park, Kyu-Bag;Ham, Hwi-Chan;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • In the drug delivery system industry, the technology with even split injection becomes important for maximizing efficiency and minimizing the side effects. In conventional drug delivery system, infection can occur due to pain and splashing. Also, various applications are impossible due to disposable use, and it is the reason to avoid to use this system because of the complexity of the driving method. Therefore, in this study, a painless drug delivery device is developed for non-pain with electrical insulation breakdown method. Finite elements analysis was used to evaluate the ejection characteristics of drugs according to the shape of the micro ejection nozzle. The effect of the number of holes in the micro nozzle, the length of the nozzle and the inner shape of the nozzle on the drug discharge characteristics were analyzed.

The Effect of Transient Nozzle Pressure Ratio on the Characteristics of Unsteady Side Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 비정상 횡력 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.678-681
    • /
    • 2010
  • In the present work, a numerical study is conducted to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST $k-{\omega}$ turbulence model are solved using a fully implicit finite volume scheme. In order to simulate the start-up and shut-down processes of the engine, NPR is varied from 2.0 to 10.0. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

  • PDF

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

A Fundamental Study of the Supersonic Microjet Flow (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • 정미선;김현섭;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed between 0.2 and 1.25 to obtain both the under- and over-expanded flows at the exit of the micronozzle. and Reynolds number Re is changed between 600 to 40000. For both laminar and turbulent microjet flows, sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

Drag Reduction Effect by Counter-flow Jet on Conventional Rocket Configuration in Supersonic/Hypersonic Flow

  • Kim, Yongchan;Kim, Duk-Min;Roh, Tae-Seong;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.18-24
    • /
    • 2020
  • The counter-flow jet from a supersonic/hypersonic vehicle causes a structural change in the shock wave generated around the aircraft, which can lead to reduced drag and heat loads. Since the idea is to mount a counter-flow jet device for drag reduction in the aircraft, it is necessary to understand the effect of such a device on the entire aircraft. In this study, the effect of drag reduction due to counter-flow jet on a conventional rocket configuration was analyzed through CFD analysis. The results showed that the drag reduction effect was the largest in the blunt region and that the counter-flow jet also affected the downstream of the aircraft. The analysis indicated that the drag reduction effect by the counter-flow jet was about 10 to 25 % when targeting the entire rocket-shaped area, while the effect was as high as 50% when targeting only blunt objects.

A Fundamental Study of Thrust-Vector Control Using a Dual Throat Nozzle (이중목 노즐을 이용한 추력벡터 제어에 관한 기초적 연구)

  • Shin, Choon-Sik;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.339-342
    • /
    • 2010
  • Dual throat nozzle(DTN) is recently attracting much attention as a new concept of the thrust vectoring technique of propulsion jet. This DTN is designed with two throats, an upstream minimum and a downstream minimum at the nozzle exit, with a cavity in between the upstream throat and exit. In the present study, a computational work has been carried out to analyze the performance of a dual throat nozzle(DTN) at various mass flow rate of secondary flow. Two-dimensional, steady, compressible Navier-Stokes equations were solved using a fully implicit finite volume scheme. The present computational results were validated with some experimental data available. Based upon the present results, Thrust-vector control using a DTN is discussed in terms of the thrust coefficient and the coefficient of discharge.

  • PDF

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

Aerodynamic Analysis Automation and Analysis Code Verification of an Airfoil in the Transonic Region (천음속영역에서 에어포일의 공력해석 자동화 및 해석코드 검증)

  • Kim, Hyun;Chung, Hyoung-Seog;Chang, Jo-Won;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.7-15
    • /
    • 2006
  • Aerodynamic analysis of an airfoil in the transonic region was automated in order to enable parametric study by using the journal file of the commercial analysis code FLUENT, pre/post process Gambit and computational mathematics code MATLAB. The automated capability was illustrated via NACA 0012 and RAE 2822 airfoils. This analysis was carried out at Mach numbers ranged from 0.70 to 0.80, angles of attack; 1$^{\circ}$, 2$^{\circ}$ and 4$^{\circ}$, Reynolds numbers; 4.0${\times}$106, 6.5${\times}$106. The analysis results of a pressure coefficient were verified by comparing with the experimental data which were measured in terms of chord length because the pressure coefficient of an airfoil surface is a good estimator of flow characteristics. The results of two airfoils show that this analysis code is useful enough to be used in the design optimization of airfoil.

  • PDF

A Study on Transmitter and Receiver Design of Proximity Magnetic Sensor for Enhancement of Target Detection Range (표적 탐지거리 향상을 위한 근접자기센서 송수신기 설계에 관한 연구)

  • Ju, Hye-Sun;Chung, Hyun-Ju;Yang, Chang-Seob;Jeon, Jae-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1151-1158
    • /
    • 2011
  • Proximity magnetic sensor is able to detect the object target accurately in close range and it has been widely used in the underwater guided weapon system because there is no countermeasures from the target. In order to increase the damage of target by shock wave due to explosion of the underwater guided weapon system, the maximum detection range of the proximity magnetic sensor needs to be increased. In this paper, we describe the techniques of the optimum transmitting and receiving coils design using the Finite Element Method for the output power enhancement of the transmitter and the sensitivity improvement of the receiver. Finally, the proposed design techniques of the transmitter and the receiver were verified using a experimental setup and a prototype.

Characteristics of the Inlet with the Pressure Perturbation in the Ramjet Engine

  • Shin, Dong-Shin;Kang, Ho-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.286-294
    • /
    • 2006
  • Flows in a ramjet inlet is simulated for the study of the rocket-ramjet transition. The flow is unsteady, two-dimensional axisymmetric, compressible and turbulent. Double time marching method is used for the unsteady calculation and HLLC method is used as a higher order MUSCL method. As for turbulent calculation, $\kappa-\omega$ SST model is used for more accurate viscous calculations. Sinusoidal pressure perturbation is given at the exit and the flow fields at the inlet is studied. The cruise condition as well as the ground test condition are considered. The pressure level for the ground test condition is relatively low and the effect of the pressure perturbation at the combustion chamber is small. The normal shock at the cruise condition is very sensitive to the pressure perturbation and can be easily detached from the cowl when the exit pressure is relatively high. The sudden decrease in the mass flux is observed when the inlet flow becomes subcritical, which can make the inlet incapable. The amplitude of travelling pressure waves becomes larger as the downstream pressure increases, and the wavelength becomes shorter as Mach number increases. The phase difference of the travelling perturbed pressure wave in space is 180 degree.